解:(1)∵△ABD是等邊三角形,E是AB中點,
∴∠ADE=∠BDE=30°,
∴∠CDG=∠CDB+∠BDE=60°+30°=90°,
同理∠CBG=90°,
∴∠BGD=360°-(60°+90°+90°)=120°;
(2)①證明:∵?CD=CB,CG=CG,
∴由勾股定理可得BG=DG,
∴△CBG≌△CDG(SSS),
∴∠DCG=∠BCG=
∠BCD=30°,
∴在Rt△CGB和Rt△CGD中,BG=DG=
CG,
∴BG+DG=CG;
②?設(shè)BG=x,由①得:CG=2x,
在Rt△CGB中,BC
2=CG
2-BG
2=4x
2-x
2=3x
2,
又∵AB=BC,
∴AB
2=BC
2=3x
2,
則
=
.
分析:(1)由三角形ABD與三角形BCD都為等邊三角形,且DE與BF為兩條高,利用三線合一得到BF與DE為角平分線,得到∠BDE=∠DBF=30°,進而求出∠CDG=∠CBG=90°,在四邊形BCDG中,利用內(nèi)角和定理求出∠BGD的度數(shù)即可;
(2)①由DC=BC,CG=CG,利用勾股定理得到DG=BG,利用SSS得出三角形CDG與三角形BCG全等,確定出∠DCG=∠BCG=30°,利用30°所對的直角邊等于斜邊的一半得出BG=DG=
GC,即可得證;②設(shè)BG=x,根據(jù)①得到CG=2x,在直角三角形CBG中,利用勾股定理表示出BC,即為AB,即可求出所求的比值.
點評:此題考查了勾股定理,以及等腰三角形的性質(zhì),熟練掌握勾股定理是解本題的關(guān)鍵.