【題目】如圖,把長(zhǎng)方形紙片ABCD沿EF折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′的位置上.
⑴若∠1=50°,求∠2、∠3的度數(shù);
⑵若AB=7,DE=8,求CF的長(zhǎng)度.
【答案】(1);(2)
【解析】
(1)∠2=∠BEF.由AD∥BC得∠1=∠2,所以∠2=∠BEF=60°,從而得∠3=80°;
(2)在△ABE中,解出AE,得出BC的長(zhǎng),根據(jù)等腰三角形的性質(zhì)得出BF的長(zhǎng),進(jìn)而根據(jù)FC= BC-BF即可得出答案.
解:(1)∵把長(zhǎng)方形紙片ABCD沿EF折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′的位置上,
∴∠2=∠4,∠1=∠2=50°,BE=DE
∴∠3=180°-50°-50°=80°;
(2)∵AB=7,DE=8,
,
∵四邊形ABCD為長(zhǎng)方形
∵∠1=∠4,
∴BE=BF=8,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(8分)如圖,一次函數(shù)y1=kx+b(k≠0)和反比例函數(shù)y2=(m≠0)的圖像交于點(diǎn)A(-1,6)、B(a,-2).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖像直接寫出y1>y2時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:平行四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,BD=2AD,E,F,G分別是OC,OD,AB的中點(diǎn).求證:
(1)BE⊥AC;
(2)EG=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】邊長(zhǎng)為a,b的矩形發(fā)生形變后成為邊長(zhǎng)為a,b的平行四邊形,如圖1,ABCD中,,AB邊上的高為h,我們把h與a的比值叫做這個(gè)平行四邊形的“形變比”.
畫出圖2中菱形ABCD形變前的圖形.
若圖2中菱形ABCD的“形變比”為,求菱形ABCD形變前后的面積之比.
當(dāng)邊長(zhǎng)為3,4的矩形形變后成為一個(gè)內(nèi)角是的平行四邊形時(shí),求這個(gè)平行四邊形的“形變比”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長(zhǎng)為8cm,點(diǎn)P從點(diǎn)C出發(fā),以1cm/秒的速度由C向B勻速運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),以2cm/秒的速度由C向A勻速運(yùn)動(dòng),AP、BQ交于點(diǎn)M,當(dāng)點(diǎn)Q到達(dá)A點(diǎn)時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)P、Q兩點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒,若∠AMQ=60°時(shí),則t的值是( )
A.1B.2C.D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋中裝有5個(gè)黃球、13個(gè)黑球和22個(gè)紅球,它們除顏色外都相同。
(1)求從袋中摸出一個(gè)球是黃球的概率;
(2)現(xiàn)從袋中取出若干個(gè)黑球,并放入相同數(shù)量的黃球,攪拌均勻后,使從袋中摸出一個(gè)球是黃球的概率不小于,問至少取出了多少個(gè)黑球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】十一黃金周期間,海洋中學(xué)決定組織部分優(yōu)秀老師去北京旅游,天馬旅行社推出如下收費(fèi)標(biāo)準(zhǔn):
(1)學(xué)校規(guī)定,人均旅游費(fèi)高于700元,但又想低于1000元,那么該校所派人數(shù)應(yīng)在什么范圍內(nèi);
(2)已知學(xué)校已付旅游費(fèi)27000元,問該校安排了多少名老師去北京旅游?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某住宅小區(qū)有一棟面朝正南的居民樓(如圖),該居民樓的一樓高為6米的小區(qū)超市,超市以上是居民住房.在該樓的前面15米處要蓋一棟高20米的新樓.已知冬季正午的陽光與水平線的夾角為30°時(shí).
(1)新樓的建造對(duì)超市以上的居民住房冬季正午的采光是否有影響,為什么?
(2)若要使超市冬季正午的采光不受影響,新樓應(yīng)建在相距居民樓至少多少米的地方,為什么?(結(jié)果保留整數(shù),參考數(shù)據(jù):sin30°≈0.5,cos30°≈0.87,tan30°≈0.58)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC=8,∠BAC=90,直線l與以AB為直徑的⊙O相切于點(diǎn)B,點(diǎn)D是直線l上任意一動(dòng)點(diǎn),連結(jié)DA交⊙O點(diǎn)E.
(1)當(dāng)點(diǎn)D在AB上方且BD=6時(shí),求AE的長(zhǎng);
(2)當(dāng)CE恰好與⊙O相切時(shí),求BD的長(zhǎng)為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com