【題目】如圖1,△ABC是直角三角形,∠ACB=90°,點(diǎn)D在AC上,DE⊥AB于E,連接BD,點(diǎn)F是BD的中點(diǎn),連接EF,CF.
(1)EF和CF的數(shù)量關(guān)系為 ;
(2)如圖2,若△ADE繞著點(diǎn)A旋轉(zhuǎn),當(dāng)點(diǎn)D落在AB上時(shí),小明通過(guò)作△ABC和△ADE斜邊上的中線CM和EN,再利用全等三角形的判定,得到了EF和CF的數(shù)量關(guān)系,請(qǐng)寫出此時(shí)EF和CF的數(shù)量關(guān)系 ;
(3)若△AED繼續(xù)繞著點(diǎn)A旋轉(zhuǎn)到圖3的位置時(shí),EF和CF的數(shù)量關(guān)系是什么?寫出你的猜想,并給予證明.
【答案】(1)EF=CF;(2)EF=CF;(3)EF=CF,證明詳見(jiàn)解析.
【解析】
(1)根據(jù)DE⊥AB,可得∠ACB=∠DEB=90°,再根據(jù)中點(diǎn)平分線段長(zhǎng)度可得EF=CF=BD,即可證明EF=CF;
(2)根據(jù)三角形斜邊中線定理可得CM=BM=AM=AB,AN=EN=DN=AD,即可推出FM=EN,再根據(jù)旋轉(zhuǎn)的性質(zhì)得ENF=∠CMF,即可證明△EFN≌△FCM(SAS),得證EF=CF;
(3)取AB的中點(diǎn)M,AD的中點(diǎn)N,連接MC,MF,EN,FN,通過(guò)證明四邊形MFNA是平行四邊形,可得NF=AM,∠FMA=∠ANF,再通過(guò)三角形斜邊中線定理和角的和差關(guān)系可得CM=NF,即可證明△MFC≌△NEF(SAS),從而得證FE=FC.
解:(1)EF=CF,
理由:∵DE⊥AB,
∴∠ACB=∠DEB=90°,
∵F是BD的中點(diǎn),
∴EF=CF=BD;
故答案為:EF=CF;
(2)EF=CF,
理由:∵∠AED=∠ACB=90°,CM和EN是△ABC和△ADE斜邊上的中線,
∴CM=BM=AM=AB,AN=EN=DN=AD,
∵點(diǎn)F是BD的中點(diǎn),
∴BF=FD,
∴AN+BF=DN+DF=FN=AB,
∴FN=CM=AM,
∵FM=FN﹣MN,AN=AM﹣MN,
∴FM=AN,
∴FM=EN,
∵△ADE繞著點(diǎn)A旋轉(zhuǎn),當(dāng)點(diǎn)D落在AB上,
∴∠EAD=∠CAB,
∵∠EAN=∠AEN,∠MAC=∠ACM,
∴∠ENF=∠EAN+∠AEN=2∠EAN,∠CMF=∠CAM+∠ACM=2∠CAM,
∴∠ENF=∠CMF,
在△EFN與△FCM中,,
∴△EFN≌△FCM(SAS),
∴EF=CF;
故答案為:EF=CF;
(3)猜想,EF=CF,
理由:如圖3中,取AB的中點(diǎn)M,AD的中點(diǎn)N,連接MC,MF,EN,FN.
∵BM=MA,BF=FD,
∴MF∥AD,MF=AD,
∵AN=ND,
∴MF=AN,MF∥AN,
∴四邊形MFNA是平行四邊形,
∴NF=AM,∠FMA=∠ANF,
在Rt△ADE中,∵AN=ND,∠AED=90°,
∴EN=AD=AN=ND,同理CM=AB=AM=MB,
在△AEN和△ACM中,
∠AEN=∠EAN,∠MCA=∠MAC,
∵∠MAC=∠EAN,
∴∠AMC=∠ANE,
又∵∠FMA=∠ANF,
∴∠ENF=∠FMC,
∵AM=FN,AM=CM,
∴CM=NF,
在△MFC和△NEF中,,
∴△MFC≌△NEF(SAS),
∴FE=FC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在⊙O中,AB是⊙O的直徑,AC=8,BC=6.
(1)求⊙O的面積;
(2)若D為⊙O上一點(diǎn),且△ABD為等腰三角形,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D在邊BC上,聯(lián)結(jié)AD,以AD為一邊作△ADE,滿足AD=AE,∠DAE=∠BAC,聯(lián)結(jié)EC.
(1)求證:CA平分∠DCE;
(2)如果AB2=BDBC,求證:四邊形ABDE是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次數(shù)學(xué)興趣小組活動(dòng)中,李燕和劉凱兩位同學(xué)設(shè)計(jì)了如圖所示的兩個(gè)轉(zhuǎn)盤做游戲(每個(gè)轉(zhuǎn)盤被分成面積相等的幾個(gè)扇形,并在每個(gè)扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時(shí)轉(zhuǎn)動(dòng)甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).
(1)請(qǐng)用列表的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;
(2)分別求出李燕和劉凱獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新型冠狀病毒肺炎疫情發(fā)生后,全社會(huì)積極參與疫情防控工作,某市為了盡快完成100萬(wàn)只口罩的生產(chǎn)任務(wù),安排甲、乙兩個(gè)大型工廠完成.已知甲廠每天能生產(chǎn)口罩的數(shù)量是乙廠每天能生產(chǎn)口罩的數(shù)量的1.5倍,并且在獨(dú)立完成60萬(wàn)只口罩的生產(chǎn)任務(wù)時(shí),甲廠比乙廠少用5天.問(wèn)至少應(yīng)安排兩個(gè)工廠工作多少天才能完成任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,NM與⊙O相切于點(diǎn)M,與AB的延長(zhǎng)線交于點(diǎn)N,MH⊥AB于點(diǎn)H.
(1)求證:∠1=∠2;
(2)若∠N=30°,BN=5,求⊙O的半徑;
(3)在(2)的條件下,求線段BN、MN及劣弧BM圍成的陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中A為直線y=x﹣1上一點(diǎn),過(guò)原點(diǎn)O的直線與反比例函數(shù)y=﹣圖象交于點(diǎn)B,C.若△ABC為等邊三角形,則點(diǎn)A的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一組數(shù)據(jù)3,4,4,5,若添加一個(gè)數(shù)4,則發(fā)生變化的統(tǒng)計(jì)量是( )
A.平均數(shù)B.眾數(shù)C.中位數(shù)D.方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在⊙O中,直徑AB=6,BC是弦,∠ABC=30°,點(diǎn)P在BC上,點(diǎn)Q在⊙O上,且OP⊥PQ.
(1)如圖1,當(dāng)PQ∥AB時(shí),求PQ的長(zhǎng)度;
(2)如圖2,當(dāng)點(diǎn)P在BC上移動(dòng)時(shí),求PQ長(zhǎng)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com