【題目】在平面直角坐標系xOy中,反比例函數(shù)的圖象經(jīng)過點A(1,4),B(m,n).
(1)求反比例函數(shù)的解析式;
(2)若二次函數(shù)的圖象經(jīng)過點B,求代數(shù)式的值;
(3)若反比例函數(shù)的圖象與二次函數(shù)的圖象只有一個交點,且該交點在直線y=x的下方,結(jié)合函數(shù)圖象,求a的取值范圍.
【答案】(1);(2);(3)0<a<2或a<-.
【解析】試題分析:(1)將點A的坐標代入反比例函數(shù)求出k即可;
(2)先求出mn的值,再根據(jù)二次函數(shù)圖象上點的坐標特征表示出n,然后代入整理即可得解;
(3)先求出反比例函數(shù)與直線的交點坐標,再根據(jù)二次函數(shù)圖象上點的坐標特征列不等式計算即可得解.
試題解析:(1)將A(1,4)代入函數(shù)y=得:k=4
反比例函數(shù)y=的解析式是
(2)∵B(m,n)在反比例函數(shù)y=上,
∴mn=4,
又二次函數(shù)y=(x-1)2的圖象經(jīng)過點 B(m,n),
∴即n-1=m2-2m
∴;
(3)由反比例函數(shù)的解析式為,令y=x,可得x2=4,解得x=±2.
∴反比例函數(shù)的圖象與直線y=x交于點(2,2),(-2,-2).
如圖,當二次函數(shù)y=a(x-1)2的圖象經(jīng)過點(2,2)時,可得a=2;
當二次函數(shù)y=a(x-1)2的圖象經(jīng)過點(-2,-2)時,可得a=-.
∵二次函數(shù)y=a(x-1)2圖象的頂點為(1,0),
∴由圖象可知,符合題意的a的取值范圍是0<a<2或a<-.
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)圖象的一部分,圖象過點A(-3,0),對稱軸為直線,下列結(jié)論:①;②;③;④若B(, )、C(, )為函數(shù)圖象上的兩點,則.其中正確結(jié)論是( )
A. ②④ B. ①③ C. ①④ D. ②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】規(guī)定:sin(-x)=-sinx,cos(-x)=cosx,sin(x+y)=sinx·cosy+cosx·siny.據(jù)此判斷下列等式成立的是_________(填序號).
①cos(-60°)=—cos60°=
②sin75°=sin(30°+45°)=sin30°·cos45°+cos30°·sin45°=
③sin2x=sin(x+x)=sinx·cosx+cosx·sinx=2sinx·cosx;
④sin(x-y)=sinx·cosy-cosx·siny.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們不妨約定:對角線互相垂直的凸四邊形叫做“十字形”.
(1)①在平行四邊形,矩形,菱形、正方形中,一定是十字形的有 ;
②若凸四邊形ABCD是十字形,AC=a,BD=b,則該四邊形的面積為 ;
(2)如圖1,以等腰Rt△ABC的底邊AC為邊作等邊三角形△ACD,連接BD,交AC于點O, 當 ≤S 四邊形≤ 時,求BD的取值范圍;
(3)如圖2,以十字形ABCD的對角線AC與BD為坐標軸,建立如圖所示的平面直角坐標系xOy,若計 十字形ABCD的面積為S,記△AOB,△COD,△AOD,△BOC的面積分別為:S1,S2,S3,S4,且同時滿足列四個條件:
① ;② ;③十字形ABCD的周長為32:④∠ABC=60°; 若E為OA的中點,F為線段BO上一動點,連接EF,動點P從點E出發(fā),以1cm/s 的速度沿線段EF勻速運動到點F,再以2cms 的速度沿線段FB勻速運動到點B,到達點B 后停止運動,當點P沿上述路線運動 到點B所需要的時間最短時,求點P走完全程所需的時間及直線EF的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,六邊形 ABCDEF 中,∠A+∠B+∠C=∠D+∠E+∠F,猜想可 得六邊形 ABCDEF 中必有兩條邊是平行的.
(1)根據(jù)圖形寫出你的猜想: ∥ ;
(2)請證明你在(1)中寫出的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:
①若a+b+c=0,則b2﹣4ac>0;
②若方程兩根為﹣1和2,則2a+c=0;
③若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;
④若b=2a+c,則方程有兩個不相等的實根.其中正確的有( )
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=∠COD=90°
(1)∠AOC和∠BOD的大小有什么關系?請說明理由.
(2)若∠BOD=150°,則∠BOC是多少度?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com