【題目】規(guī)定:sin(-x)=-sinx,cos(-x)=cosx,sin(x+y)=sinx·cosy+cosx·siny.據(jù)此判斷下列等式成立的是_________(填序號).
①cos(-60°)=—cos60°=
②sin75°=sin(30°+45°)=sin30°·cos45°+cos30°·sin45°=
③sin2x=sin(x+x)=sinx·cosx+cosx·sinx=2sinx·cosx;
④sin(x-y)=sinx·cosy-cosx·siny.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(4,3)是反比例函數(shù)y=在第一象限圖象上一點(diǎn),連接OA,過A作AB∥x軸,截取AB=OA(B在A右側(cè)),連接OB,交反比例函數(shù)y=的圖象于點(diǎn)P.
(1)求反比例函數(shù)y=的表達(dá)式;
(2)求點(diǎn)B的坐標(biāo);
(3)求△OAP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的面積為24,點(diǎn)D在線段AC上,點(diǎn)D在線段BC的延長線上,且BF=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),,,線段經(jīng)過平移得到線段,其中點(diǎn)的對應(yīng)點(diǎn)為點(diǎn),點(diǎn)D在第一象限,直線AC交軸于點(diǎn)
(1)點(diǎn)D坐標(biāo)為
(2)線段由線段經(jīng)過怎樣平移得到?
(3)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分線,DE⊥AB,垂足為E.
(1)已知CD=4cm,求AC的長;
(2)求證:AB=AC+CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,□ABCD的對角線AC,BD相交于點(diǎn)O,且AE∥BD,BE∥AC,OE=CD.
(1)求證:四邊形 ABCD 是菱形;
(2)若∠ADC=60°,BE=2,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4月23日是世界讀書日,某校為了營造讀書好、好讀書、讀好書的書香校園,決定采購《簡·愛》、《小詞大雅》兩種圖書供學(xué)生閱讀,通過了解,購買2本《簡·愛》和3本《小詞大雅》共需168元,購買3本《簡·愛》和2本《小詞大雅》共需172元.
(1)求一本《簡·愛》和《小詞大雅》的價(jià)格分別是多少元;
(2)若該校計(jì)劃購買兩種圖書共300本,其中《簡·愛》的數(shù)量不多于《小詞大雅》數(shù)量,且不少于100件.購買《簡·愛》m本,求總費(fèi)用W元與m之間的函數(shù)關(guān)系式,并寫出m的取值范圍;
(3)在(2)的條件下,學(xué)校在團(tuán)購書籍時(shí),商家店鋪中《簡·愛》正進(jìn)行書籍促銷活動,每本書箱降價(jià)a元(0< a <8),求學(xué)校購書的的最低總費(fèi)用W1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,反比例函數(shù)的圖象經(jīng)過點(diǎn)A(1,4),B(m,n).
(1)求反比例函數(shù)的解析式;
(2)若二次函數(shù)的圖象經(jīng)過點(diǎn)B,求代數(shù)式的值;
(3)若反比例函數(shù)的圖象與二次函數(shù)的圖象只有一個(gè)交點(diǎn),且該交點(diǎn)在直線y=x的下方,結(jié)合函數(shù)圖象,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
【答案】(1)b=﹣2a,頂點(diǎn)D的坐標(biāo)為(﹣,﹣);(2);(3) 2≤t<.
【解析】試題分析:(1)把M點(diǎn)坐標(biāo)代入拋物線解析式可得到b與a的關(guān)系,可用a表示出拋物線解析式,化為頂點(diǎn)式可求得其頂點(diǎn)D的坐標(biāo);
(2)把點(diǎn)代入直線解析式可先求得m的值,聯(lián)立直線與拋物線解析式,消去y,可得到關(guān)于x的一元二次方程,可求得另一交點(diǎn)N的坐標(biāo),根據(jù)a<b,判斷a<0,確定D、M、N的位置,畫圖1,根據(jù)面積和可得的面積即可;
(3)先根據(jù)a的值確定拋物線的解析式,畫出圖2,先聯(lián)立方程組可求得當(dāng)GH與拋物線只有一個(gè)公共點(diǎn)時(shí),t的值,再確定當(dāng)線段一個(gè)端點(diǎn)在拋物線上時(shí),t的值,可得:線段GH與拋物線有兩個(gè)不同的公共點(diǎn)時(shí)t的取值范圍.
試題解析:(1)∵拋物線有一個(gè)公共點(diǎn)M(1,0),
∴a+a+b=0,即b=2a,
∴拋物線頂點(diǎn)D的坐標(biāo)為
(2)∵直線y=2x+m經(jīng)過點(diǎn)M(1,0),
∴0=2×1+m,解得m=2,
∴y=2x2,
則
得
∴(x1)(ax+2a2)=0,
解得x=1或
∴N點(diǎn)坐標(biāo)為
∵a<b,即a<2a,
∴a<0,
如圖1,設(shè)拋物線對稱軸交直線于點(diǎn)E,
∵拋物線對稱軸為
設(shè)△DMN的面積為S,
(3)當(dāng)a=1時(shí),
拋物線的解析式為:
有
解得:
∴G(1,2),
∵點(diǎn)G、H關(guān)于原點(diǎn)對稱,
∴H(1,2),
設(shè)直線GH平移后的解析式為:y=2x+t,
x2x+2=2x+t,
x2x2+t=0,
△=14(t2)=0,
當(dāng)點(diǎn)H平移后落在拋物線上時(shí),坐標(biāo)為(1,0),
把(1,0)代入y=2x+t,
t=2,
∴當(dāng)線段GH與拋物線有兩個(gè)不同的公共點(diǎn),t的取值范圍是
【題型】解答題
【結(jié)束】
26
【題目】搖椅是老年人很好的休閑工具,右圖是一張搖椅放在客廳的側(cè)面示意圖,搖椅靜止時(shí),以O(shè)為圓心OA為半徑的的中點(diǎn)P著地,地面NP與相切,已知∠AOB=60°,半徑OA=60cm,靠背CD與OA的夾角∠ACD=127°,C為OA的中點(diǎn),CD=80cm,當(dāng)搖椅沿滾動至點(diǎn)A著地時(shí)是搖椅向后的最大安全角度.
(1)靜止時(shí)靠背CD的最高點(diǎn)D離地面多高?
(2)靜止時(shí)著地點(diǎn)P至少離墻壁MN的水平距離是多少時(shí)?才能使搖椅向后至最大安全角度時(shí)點(diǎn)D不與墻壁MN相碰.
(精確到1cm,參考數(shù)據(jù)π取3.14,sin37°=0.60,cos37°=0.80,tan37°=0.75,sin67°=0.92,cos67°=0.39,tan67°=2.36, =1.41, =1.73)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com