【題目】在Rt△ABC中,∠ACB=90°,AC=1,BC= ,點O為Rt△ABC內(nèi)一點,連接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,則OA+OB+OC=

【答案】
【解析】解:∵∠ACB=90°,AC=1,BC= , ∴tan∠ABC= = = ,
∴∠ABC=30°,
∵△AOB繞點B順時針方向旋轉(zhuǎn)60°,
∴∠A′BC=∠ABC+60°=30°+60°=90°,
∴A′B⊥CB,
∵∠ACB=90°,AC=1,∠ABC=30°,
∴AB=2AC=2,
∵△AOB繞點B順時針方向旋轉(zhuǎn)60°,得到△A′O′B,
∴A′B=AB=2,BO=BO′,A′O′=AO,
∴△BOO′是等邊三角形,
∴BO=OO′,∠BOO′=∠BO′O=60°,
∵∠AOC=∠COB=∠BOA=120°,
∴∠COB+∠BOO′=∠BO′A′+∠BO′O=120°+60°=180°,
∴C、O、A′、O′四點共線,
在Rt△A′BC中,A′C= = ,
∴OA+OB+OC=A′O′+OO′+OC=A′C=
所以答案是:

【考點精析】根據(jù)題目的已知條件,利用等邊三角形的性質(zhì)的相關知識可以得到問題的答案,需要掌握等邊三角形的三個角都相等并且每個角都是60°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC,點D、E分別是邊AB、AC的中點,延長DE到F,使得EF=DE,那么四邊形ADCF是(
A.等腰梯形
B.直角梯形
C.矩形
D.菱形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,點M是邊AB的中點,連結(jié)CM,點P從點C出發(fā),以1cm/s的速度沿CB運動到點B停止,以PC為邊作正方形PCDE,點D落在線段AC上.設點P的運動時間為t(s).
(1)當t=時,點E落在△MBC的邊上;
(2)以E為圓心,1cm為半徑作圓E,則當t=時,圓E與直線AB或直線CM相切.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABO縮小后變?yōu)椤鰽′B′O,其中A、B的對應點分別為A′,B′,A′,B′均在圖中格點上,若線段AB上有一點P(m,n),則點P在A′B′上的對應點P′的坐標為(
A.( ,n)??
B.(m,n)??
C.( , )??
D.(m,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,過C點的切線CE垂直于弦AD于點E,連OD交AC于點F.
(1)求證:∠BAC=∠DAC;
(2)若AF:FC=6:5,求sin∠BAC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD邊長為8cm,F(xiàn)G是等腰直角△EFG的斜邊,F(xiàn)G=10cm,點B、F、C、G都在直線l上,△EFG以1cm/s的速度沿直線l向右做勻速運動,當t=0時,點G與B重合,記t(0≤t≤8)秒時,正方形與三角形重合部分的面積是Scm2 , 則S與t之間的函數(shù)關系圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C、G是⊙O上兩點,且AC=CG,過點C的直線CD⊥BG于點D,交BA的延長線于點E,連接BC,交OD于點F.

(1)求證:CD是⊙O的切線.
(2)若,求∠E的度數(shù).
(3)連接AD,在2的條件下,若CD=,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程(a﹣1)x2﹣2x+2=0有實數(shù)根,則整數(shù)a的最大值為( 。
A.-1
B.0
C.1
D.2

查看答案和解析>>

同步練習冊答案