如圖,已知反比例函數(shù)的圖象經(jīng)過點(diǎn)(,8),直線y=-x+b經(jīng)過該反比例函數(shù)圖象上的點(diǎn)Q(4,m).
(1)求上述反比例函數(shù)和直線的函數(shù)表達(dá)式;
(2)設(shè)該直線與x軸、y軸分別相交于A、B兩點(diǎn),與反比例函數(shù)圖象的另一個交點(diǎn)為P,連接0P、OQ,求△OPQ的面積.

【答案】分析:(1)把點(diǎn)(,8)代入反比例函數(shù),確定反比例函數(shù)的解析式為y=;再把點(diǎn)Q(4,m)代入反比例函數(shù)的解析式得到Q的坐標(biāo),然后把Q的坐標(biāo)代入直線y=-x+b,即可確定b的值;
(2)把反比例函數(shù)和直線的解析式聯(lián)立起來,解方程組得到P點(diǎn)坐標(biāo);對于y=-x+5,令y=0,求出A點(diǎn)坐標(biāo),然后根據(jù)S△OPQ=S△AOB-S△OBP-S△OAQ進(jìn)行計(jì)算即可.
解答:解:(1)把點(diǎn)(,8)代入反比例函數(shù),得k=×8=4,
∴反比例函數(shù)的解析式為y=
又∵點(diǎn)Q(4,m)在該反比例函數(shù)圖象上,
∴4•m=4,
解得m=1,即Q點(diǎn)的坐標(biāo)為(4,1),
而直線y=-x+b經(jīng)過點(diǎn)Q(4,1),
∴1=-4+b,
解得b=5,
∴直線的函數(shù)表達(dá)式為y=-x+5;

(2)聯(lián)立,
解得,
∴P點(diǎn)坐標(biāo)為(1,4),
對于y=-x+5,令y=0,得x=5,
∴A點(diǎn)坐標(biāo)為(5,0),
∴S△OPQ=S△AOB-S△OBP-S△OAQ
=×5×5-×5×1-×5×1
=
點(diǎn)評:本題考查了點(diǎn)在圖象上,點(diǎn)的橫縱坐標(biāo)滿足圖象的解析式以及求兩個圖象交點(diǎn)的方法(轉(zhuǎn)化為解方程組);也考查了利用面積的和差求圖形面積的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
m
x
圖象與一次函數(shù)y=kx+b的圖象均經(jīng)過A(-1,4)和B(a,
4
5
)兩點(diǎn),
(1)求B點(diǎn)的坐標(biāo)及兩個函數(shù)的解析式;
(2)若一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)C,求C點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
(k>0)的圖象經(jīng)過點(diǎn)A(2,m),過點(diǎn)A作AB⊥x軸于點(diǎn)B,且S△AOB=3.若一次函數(shù)y=ax+1的圖象經(jīng)過點(diǎn)A,并且與x軸相交于點(diǎn)C,求AO:AC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知反比例函數(shù)y=
kx
的圖象與一次函數(shù)y=ax+b的圖象交于M(2,m)和N(-1,-4)兩點(diǎn).
(1)求這兩個函數(shù)的解析式;
(2)求△MON的面積;
(3)請判斷點(diǎn)P(4,1)是否在這個反比例函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y1=
kx
和一次函數(shù)y2=ax+b的圖象相交于點(diǎn)A和點(diǎn)D,且點(diǎn)A的橫坐標(biāo)為1,點(diǎn)D的縱坐標(biāo)為-1.過點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積為1.
(1)求反比例函數(shù)和一次函數(shù)的解析式.
(2)若一次函數(shù)y2=ax+b的圖象與x軸相交于點(diǎn)C,求∠ACO的度數(shù).
(3)結(jié)合圖象直接寫出:當(dāng)y1>y2時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知反比例函數(shù)y=
k
x
的圖象經(jīng)過第二象限內(nèi)的點(diǎn)A(-1,m),AB⊥x軸于點(diǎn)B,△AOB的面積為2.若直線y=ax+b經(jīng)過點(diǎn)A,并且經(jīng)過反比例函數(shù)y=
k
x
的圖象上另一點(diǎn)C(n,一2).
(1)求直線y=ax+b的解析式;
(2)設(shè)直線y=ax+b與x軸交于點(diǎn)M,求AM的長;
(3)在雙曲線上是否存在點(diǎn)P,使得△MBP的面積為8?若存在請求P點(diǎn)坐標(biāo);若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案