【題目】如圖,點(diǎn)C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點(diǎn)D在線段AB上運(yùn)動,點(diǎn)E與點(diǎn)D關(guān)于AC對稱,DF⊥DE于點(diǎn)D,并交EC的延長線于點(diǎn)F.下列結(jié)論:
①CE=CF;
②線段EF的最小值為;
③當(dāng)AD=2時(shí),EF與半圓相切;
④若點(diǎn)F恰好落在B C上,則AD=;
⑤當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動到點(diǎn)B時(shí),線段EF掃過的面積是.
其中正確結(jié)論的序號是 .
【答案】①③⑤.
【解析】試題分析:①連接CD,如圖1所示,∵點(diǎn)E與點(diǎn)D關(guān)于AC對稱,∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,∴結(jié)論“CE=CF”正確;
②當(dāng)CD⊥AB時(shí),如圖2所示,∵AB是半圓的直徑,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=.∵CD⊥AB,∠CBA=30°,∴CD=BC=.根據(jù)“點(diǎn)到直線之間,垂線段最短”可得:點(diǎn)D在線段AB上運(yùn)動時(shí),CD的最小值為.∵CE=CD=CF,∴EF=2CD.∴線段EF的最小值為.∴結(jié)論“線段EF的最小值為”錯(cuò)誤;
③當(dāng)AD=2時(shí),連接OC,如圖3所示,∵OA=OC,∠CAB=60°,∴△OAC是等邊三角形,∴CA=CO,∠ACO=60°,∵AO=4,AD=2,∴DO=2,∴AD=DO,∴∠ACD=∠OCD=30°,∵點(diǎn)E與點(diǎn)D關(guān)于AC對稱,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF經(jīng)過半徑OC的外端,且OC⊥EF,∴EF與半圓相切,∴結(jié)論“EF與半圓相切”正確;
④當(dāng)點(diǎn)F恰好落在上時(shí),連接FB、AF,如圖4所示,∵點(diǎn)E與點(diǎn)D關(guān)于AC對稱,∴ED⊥AC,∴∠AGD=90°,∴∠AGD=∠ACB,∴ED∥BC,∴△FHC∽△FDE,∴FH:FD=FC:FE,∵FC=EF,∴FH=FD,∴FH=DH,∵DE∥BC,∴∠FHC=∠FDE=90°,∴BF=BD,∴∠FBH=∠DBH=30°,∴∠FBD=60°,∵AB是半圓的直徑,∴∠AFB=90°,∴∠FAB=30°,∴FB=AB=4,∴DB=4,∴AD=AB﹣DB=4,∴結(jié)論“AD=”錯(cuò)誤;
⑤∵點(diǎn)D與點(diǎn)E關(guān)于AC對稱,點(diǎn)D與點(diǎn)F關(guān)于BC對稱,∴當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動到點(diǎn)B時(shí),點(diǎn)E的運(yùn)動路徑AM與AB關(guān)于AC對稱,點(diǎn)F的運(yùn)動路徑NB與AB關(guān)于BC對稱,∴EF掃過的圖形就是圖5中陰影部分,∴S陰影=2S△ABC=2×ACBC=ACBC=4×=,∴EF掃過的面積為,∴結(jié)論“EF掃過的面積為”正確.
故答案為:①③⑤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列貨車從北京開往烏魯木齊,以58km/h的平均速度行駛需要65h.為了實(shí)施西部大開發(fā),京烏線決定全線提速.
(1)如果提速后平均速度為vkm/h,全程運(yùn)營時(shí)間為t小時(shí),試寫出t與v之間的函數(shù)表達(dá)式;
(2)如果提速后平均速度為78km/h,求提速后全程運(yùn)營時(shí)間;
(3)如果全程運(yùn)營的時(shí)間控制在40h內(nèi),那么提速后,平均速度至少應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形的 2 個(gè)頂點(diǎn)的坐標(biāo)為,,第三個(gè)頂點(diǎn)在 軸上,且與 軸的距離是 3 個(gè)單位,求第四個(gè)頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)某商場統(tǒng)計(jì)了今年1~5月A,B兩種品牌冰箱的銷售情況,并將獲得的數(shù)據(jù)繪制成折線統(tǒng)計(jì)圖.
(1)分別求該商場這段時(shí)間內(nèi)A,B兩種品牌冰箱月銷售量的中位數(shù)和方差;
(2)根據(jù)計(jì)算結(jié)果,比較該商場1~5月這兩種品牌冰箱月銷售量的穩(wěn)定性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.小華與小明同學(xué)就“你最喜歡哪種學(xué)習(xí)方式”隨機(jī)調(diào)查了他們周圍的一些同學(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下兩個(gè)不完整的統(tǒng)計(jì)圖(如圖).
請根據(jù)上面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下4個(gè)問題:
(1)這次抽樣調(diào)查中,共調(diào)查了_____名學(xué)生.
(2)補(bǔ)全條形統(tǒng)計(jì)圖中的缺項(xiàng).
(3)在扇形統(tǒng)計(jì)圖中,選擇教師傳授的占_____%,選擇小組合作學(xué)習(xí)的占_____%.
(4)根據(jù)調(diào)查結(jié)果,估算該校1800名學(xué)生中大約有_____人選擇小組合作學(xué)習(xí)模式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防流感,某學(xué)校在星期天用藥熏消毒法對教室進(jìn)行消毒.已知藥物釋放過程中,室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(小時(shí))成正比例;藥物釋放完畢后,y與x成反比例,如圖所示.根據(jù)以上信息解答下列問題:
(1)求藥物釋放完畢后,y與x之間的函數(shù)關(guān)系式并寫出自變量的取值范圍;
(2)據(jù)測定,當(dāng)空氣中每立方米的含藥量降低到0.25毫克以下時(shí),學(xué)生方可進(jìn)入教室,那么,從星期天下午5:00開始對某教室釋放藥物進(jìn)行消毒,到星期一早上7:00時(shí)學(xué)生能否進(jìn)入教室?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可繞點(diǎn)B旋轉(zhuǎn),設(shè)旋轉(zhuǎn)過程中直線CC′和AA′相交于點(diǎn)D.
(1)如圖1所示,當(dāng)點(diǎn)C′在AB邊上時(shí),判斷線段AD和線段A′D之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)將Rt△A′BC′由圖1的位置旋轉(zhuǎn)到圖2的位置時(shí),(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;
(3)將Rt△A′BC′由圖1的位置按順時(shí)針方向旋轉(zhuǎn)α角(0°≤α≤120°),當(dāng)A、C′、A′三點(diǎn)在一條直線上時(shí),請直接寫出旋轉(zhuǎn)角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD的四個(gè)角向內(nèi)翻折后,恰好拼成一個(gè)無縫隙無重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長是________ cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com