【題目】函數(shù)在同一直角坐標系中的圖象可能是(  )

A. B. C. D.

【答案】C

【解析】

當反比例函數(shù)圖象分布在第一、三象限,則a0,然后根據(jù)一次函數(shù)圖象與系數(shù)的關(guān)系對AB進行判斷;當反比例函數(shù)圖象分布在第二、四象限,則a0,然后根據(jù)一次函數(shù)圖象與系數(shù)的關(guān)系對CD進行判斷.

解:A、從反比例函數(shù)圖象得a0,則對應(yīng)的一次函數(shù)y=ax-a圖象經(jīng)過第一、三、四象限,所以A選項錯誤;
B、從反比例函數(shù)圖象得a0,則對應(yīng)的一次函數(shù)y=ax-a圖象經(jīng)過第一、三、四象限,所以B選項錯誤;
C、從反比例函數(shù)圖象得a0,則對應(yīng)的一次函數(shù)y=ax-a圖象經(jīng)過第一、二、四象限,所以C選項正確;
D、從反比例函數(shù)圖象得a0,則對應(yīng)的一次函數(shù)y=ax-a圖象經(jīng)過第一、二、四象限,所以D選項錯誤.
故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸上原點左邊有一點A,點A對應(yīng)著數(shù)a,有如下說法:

①﹣a表示的數(shù)一定是一個正數(shù).

②若|a|9時,則a=﹣9

③在﹣a,a2,a3中,最大的數(shù)值是a2

④式子|a+|的最小值為2

其中正確的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C在以AB為直徑的半圓上,AB=8∠CBA=30°,點D在線段AB上運動,點E與點D關(guān)于AC對稱,DF⊥DE于點D,并交EC的延長線于點F.下列結(jié)論:

①CE=CF;

線段EF的最小值為;

AD=2時,EF與半圓相切;

若點F恰好落在B C上,則AD=;

當點D從點A運動到點B時,線段EF掃過的面積是

其中正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學在實施快樂大課間之前組織過我最喜歡的球類的調(diào)查活動,每個學生僅選擇一項,通過對學生的隨機抽樣調(diào)查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制成的不完整統(tǒng)計圖.

(1)求出被調(diào)查的學生人數(shù);

(2)把折線統(tǒng)計圖補充完整;

(3)小亮、小瑩、小芳和大剛到學校乒乓球室打乒乓球,當時只有一副空球桌,他們只能選兩人打第一場.如果確定小亮打第一場,其余三人用手心、手背的方法確定誰獲勝誰打第一場若三人中有一人出的與其余兩人不同則獲勝;若三人出的都相同則平局.已知大剛出手心,請用樹狀圖分析大剛獲勝的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且|a|=|c|.

(1)若|a+c|+|b|=2,求b的值;

(2)用“>”從大到小把a,b,﹣b,c連接起來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的頂點FAB中點,兩邊FDFE分別交AC,BC于點D,E兩點,當∠DFE在△ABC內(nèi)繞頂點F旋轉(zhuǎn)時(點D不與A,C重合),給出以下個結(jié)論:①CD=BE;②四邊形CDFE不可能是正方形;③△DFE是等腰直角三角形;④S四邊形CDFE=SABC.上述結(jié)論中始終正確的有______.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面為某年11月的日歷:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

(1)在日歷上任意圈出一個豎列上相鄰的3個數(shù);

設(shè)中間的一個數(shù)為,則另外的兩個數(shù)為 、 ;

若已知這三個數(shù)的和為42,則這三天都在星期 ;

(2)在日歷上用一個小正方形任意圈出其中的9個數(shù),設(shè)圈出的9個數(shù)的中心的數(shù)為b,若這9個數(shù)的和為153,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,雙曲線y經(jīng)過RtBOC斜邊上的點A,且滿足,與BC交于點D,SBOD21,求:

1SBOC

2k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校計劃在總費用元的限額內(nèi),租用汽車送名學生和名教師集體參加校外實踐活動,為確保安全,每輛汽車上至少要有名教師.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如下表所示.

1)根據(jù)題干所提供的信息,確定共需租用多少輛汽車?

2)請你給學校選擇一種最節(jié)省費用的租車方案.

查看答案和解析>>

同步練習冊答案