【題目】若等式(﹣5)□5=0成立,則□內(nèi)的運(yùn)算符號(hào)為( 。
A. + B. ﹣ C. × D. ÷
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】ABC與DEF的相似比為1:3,則ABC與DEF的面積比為( )
A. 1:3 B. 1:6 C. 1:9 D. 1:16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】248-1能夠被60~70之間的兩個(gè)數(shù)整除,則這兩個(gè)數(shù)是______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用反證法證明命題“在直角三角形中,至少有一個(gè)銳角不大于 45°”時(shí)第一步先假設(shè)所求證的結(jié)論不成立,即問(wèn)題表述為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題11分)完成下列推理說(shuō)明:
(1)如圖,已知∠1=∠2,∠B=∠C,可推出AB∥CD.理由如下:
因?yàn)椤?=∠2(已知),且∠1=∠4(___________)
所以∠2=∠4(等量代換)
所以CE∥BF(___________)
所以∠___=∠3(_________________)
又因?yàn)椤螧=∠C(已知)
所以∠3=∠B(等量代換)
所以AB∥CD(______________________))
(2)如圖,已知∠B+∠BCD=180°,∠B=∠D.求證:∠E=∠DFE.
證明:∵∠B+∠BCD=180°( 已知。,
∴AB∥CD (__________)
∴∠B= ____(_______________________)
又∵∠B=∠D( 已知 ),
∴ ∠_____= ∠__________ ( 等量代換 )
∴AD∥BE(_____________________)
∴∠E=∠DFE(_____________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分10分)
如圖,長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A、C的坐標(biāo)分別為A(3,0)、
C(0,2),點(diǎn)B在第一象限。
(1)寫(xiě)出點(diǎn)B的坐標(biāo);
(2)若過(guò)點(diǎn)C的直線交長(zhǎng)方形的OA邊于點(diǎn)D,且把長(zhǎng)方形OABC的周長(zhǎng)分成2∶3的兩部分,求點(diǎn)D的坐標(biāo);
(3)如果將(2)中的線段CD向下平移3個(gè)單位長(zhǎng)度,得到對(duì)應(yīng)線段C′D′,在平面直角坐標(biāo)系中畫(huà)出△CD′C′,并求出它的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用配方法解方程x2-2x-1=0時(shí),配方后得的方程為( )
A. (x+1)2=0 B. (x-1)2=0 C. (x+1)2=2 D. (x-1)2=2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com