【題目】(本小題滿分10分)

如圖,長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A、C的坐標(biāo)分別為A3,0)、

C02),點(diǎn)B在第一象限。

(1)寫出點(diǎn)B的坐標(biāo);

(2)若過(guò)點(diǎn)C的直線交長(zhǎng)方形的OA邊于點(diǎn)D,且把長(zhǎng)方形OABC的周長(zhǎng)分成2∶3的兩部分,求點(diǎn)D的坐標(biāo);

(3)如果將(2)中的線段CD向下平移3個(gè)單位長(zhǎng)度,得到對(duì)應(yīng)線段CD,在平面直角坐標(biāo)系中畫出CDC,并求出它的面積。

【答案】1B3,2………………………2

2)長(zhǎng)方形OABC的周長(zhǎng)為10. …………………3

點(diǎn)DOA邊上,把長(zhǎng)方形OABC的周長(zhǎng)分成2 3兩部分。∵OC+OA=5<6 ∴只能OC+OD=4

∵OC=2

∴OD=4-2=2

D(2,0) …………………5

3)三角形C DC如圖 ………………………7

CC=3 D(2,-3) ……………………………8

三角形C DC的面積為:………………10

【解析】略

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,DE平分∠ADC,AD=6,BE=2,則平行四邊形ABCD的周長(zhǎng)是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖表示的是汽車在行駛的過(guò)程中,速度隨時(shí)間變化而變化的情況.

(1)汽車從出發(fā)到最后停止共經(jīng)過(guò)了多少時(shí)間?它的最高時(shí)速是多少?

(2)汽車在那些時(shí)間段保持勻速行駛?時(shí)速分別是多少?

(3)出發(fā)后8分到10分之間可能發(fā)生了什么情況?

(4)用自己的語(yǔ)言大致描述這輛汽車的行駛情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若等式(﹣5□5=0成立,則內(nèi)的運(yùn)算符號(hào)為( 。

A. + B. C. × D. ÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是(

A.對(duì)角線相等的四邊形是矩形

B.對(duì)角線互相垂直的四邊形是菱形

C.每一條邊都相等且每一個(gè)角也都相等的四邊形是正方形

D.平行四邊形的對(duì)角線相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,AGDB交CB的延長(zhǎng)線于G.

1求證:ADE≌△CBF;

2若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,對(duì)角線AC上有一點(diǎn)P,連接BP、DP,過(guò)點(diǎn)PPEPBCD于點(diǎn)E,連接BE.

(1)求證:BP=EP;

(2)若CE=3,BE=6,求∠CPE的度數(shù);

(3)探究AP、PC、BE之間的數(shù)量關(guān)系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程x2+x-1=0 的根的情況為

A有兩個(gè)不相等的實(shí)數(shù)根 B有兩個(gè)相等的實(shí)數(shù)根

C只有一個(gè)實(shí)數(shù)根 D沒(méi)有實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線b、c是常數(shù),且c<0與x軸交于A、B兩點(diǎn)點(diǎn)A在點(diǎn)B的左側(cè),與y軸的負(fù)半軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為-1,0

1b=______,點(diǎn)B的橫坐標(biāo)為_______上述結(jié)果均用含c的代數(shù)式表示;

2連結(jié)BC,過(guò)點(diǎn)A作直線AE//BC,與拋物線交于點(diǎn)E.點(diǎn)D是x軸上一點(diǎn),坐標(biāo)為2,0,當(dāng)C、D、E三點(diǎn)在同一直線上時(shí),求拋物線的解析式;

32的條件下,點(diǎn)P是x軸下方的拋物線上的一動(dòng)點(diǎn),連結(jié)PB、PC.設(shè)PBC的面積為S.

求S的取值范圍;

PBC的面積S為正整數(shù),則這樣的PBC共有_____個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案