【題目】如圖1)繞點(diǎn)順時(shí)針旋轉(zhuǎn)得,射線交射線于點(diǎn)

1的關(guān)系是   ;

2)如圖2,當(dāng)旋轉(zhuǎn)角為60°時(shí),點(diǎn),點(diǎn)與線段的中點(diǎn)恰好在同一直線上,延長(zhǎng)至點(diǎn),使,連接

的關(guān)系是   ,請(qǐng)說(shuō)明理由;

②如圖3,連接,若,,求線段的長(zhǎng)度.

【答案】1;(2)①,理由見(jiàn)解析;②

【解析】

1)如圖1,的交點(diǎn)記作點(diǎn),由旋轉(zhuǎn)的性質(zhì)與三角形內(nèi)角和定理得到,即可求解;

2)①如圖2,連接,由旋轉(zhuǎn)的性質(zhì)及全等三角形的性質(zhì)得到,故,即可證明,再得到,即可得到結(jié)論;

②由,,由角度的關(guān)系得到,

再 證明,再利用等腰三角形的性質(zhì)得到,再利用直角三角形三角函數(shù)求出,即可求出AE的長(zhǎng).

解:(1)如圖1,

的交點(diǎn)記作點(diǎn),由旋轉(zhuǎn)知,,,

,

,,

,

故答案為:

2)①,

理由:如圖2,連接,由旋轉(zhuǎn)知,,,,

是等邊三角形,∴,

,

,

的中點(diǎn),

,

,,

),

,

,

,

故答案為:;

②由①知,,

,

,

,

由①知,,

,

,

,

,

中,,

中,,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,若水面下降2m,則水面寬度增加( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB,CD是圓O的直徑,AE是圓O的弦,且AECD,過(guò)點(diǎn)C的圓O切線與EA的延長(zhǎng)線交于點(diǎn)P,連接AC

1)求證:AC平分∠BAP;

2)求證:PC2=PAPE;

3)若AE-AP=PC=4,求圓O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩條拋物線的頂點(diǎn)相同.

1)求拋物線的解析式;

2)點(diǎn)是拋物找在第四象限內(nèi)圖象上的一動(dòng)點(diǎn),過(guò)點(diǎn)軸,為垂足,求的最大值;

3)設(shè)拋物線的頂點(diǎn)為點(diǎn),點(diǎn)的坐標(biāo)為,問(wèn)在的對(duì)稱軸上是否存在點(diǎn),使線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到線段,且點(diǎn)恰好落在拋物線上?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某化工材料經(jīng)銷商購(gòu)進(jìn)一種化工材料若干千克,成本為每千克30元,物價(jià)部門規(guī)定其銷售單價(jià)不低于成本價(jià)且不高于成本價(jià)的2倍,經(jīng)試銷發(fā)現(xiàn),日銷售量y(千克)與銷售單價(jià)x(元)符合一次函數(shù)關(guān)系,如圖所示.

1)求yx之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

2)若在銷售過(guò)程中每天還要支付其他費(fèi)用450元,當(dāng)銷售單價(jià)為多少時(shí),該公司日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=6,若點(diǎn)E,F分別在AB,CD上,且BE=2AE,DF=2FCG,H分別是AC的三等分點(diǎn),則四邊形EHFG的面積為(

A. 1B. C. 2D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題提出:

1)如圖1,已知△ABC,試確定一點(diǎn)D,使得以AB,CD為頂點(diǎn)的四邊形為平行四邊形,請(qǐng)畫(huà)出這個(gè)平行四邊形;

問(wèn)題探究:

2)如圖2,在矩形ABCD中,AB=4,BC=10,若要在該矩形中作出一個(gè)面積最大的△BPC,且使∠BPC90°,求滿足條件的點(diǎn)P到點(diǎn)A的距離;

問(wèn)題解決:

3)如圖3,有一座草根塔A,按規(guī)定,要以塔A為對(duì)稱中心,建一個(gè)面積盡可能大的形狀為平行四邊形的草根景區(qū)BCDE。根據(jù)實(shí)際情況,要求頂點(diǎn)B是定點(diǎn),點(diǎn)B到塔A的距離為50米,∠CBE=120°,那么,是否可以建一個(gè)滿足要求的面積最大的平行四邊形景區(qū)BCDE?若可以,求出滿足要求的平行四邊形BCDE的最大面積;若不可以,請(qǐng)說(shuō)明理由。(塔A的占地面積忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)E、F分別在邊AB、BC上,且AE=BF=1,CEDF交于點(diǎn)O.下列結(jié)論:①∠DOC=90°, ②OC=OE, ③tan∠OCD =中,正確的有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究

如圖,拋物線經(jīng)過(guò)點(diǎn)A(-2,0)B(4,0)兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)D是拋物線上一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為.連接AC,BC,DB,DC,

(1)求拋物線的函數(shù)表達(dá)式;

(2)△BCD的面積等于△AOC的面積的時(shí),求的值;

(3)(2)的條件下,若點(diǎn)M軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)N是拋物線上一動(dòng)點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,DM,N為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案