【題目】如圖,AB,CD是圓O的直徑,AE是圓O的弦,且AECD,過(guò)點(diǎn)C的圓O切線與EA的延長(zhǎng)線交于點(diǎn)P,連接AC

1)求證:AC平分∠BAP;

2)求證:PC2=PAPE;

3)若AE-AP=PC=4,求圓O的半徑.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)5.

【解析】

1OA=OC,則∠OCA=OAC,CDAP,則∠OCA=PAC,即可求解;

2)證明PAC∽△PCE,即可求解;

3)利用PAC∽△CABPC2=AC2-PA2,AC2=AB2-BC2,即可求解.

解:(1OA=OC,∴∠OCA=∠OAC

CDAP

∴∠OCA=∠PAC,

∴∠OAC=∠PAC,

AC平分BAP

2)連接AD,

CD為圓的直徑,

∴∠CAD=90°,

∴∠DCA+∠D=90°

CDPA,

∴∠DCA=∠PAC

PAC+∠PCA=90°,

∴∠PAC=∠D=∠E

∴△PAC∽△PCE,

PC2=PAPE;

3AE=AP+PC=AP+4,

由(2)得16=PAPA+PA+4),

PA2+2PA-8=0,解得,PA=2,

連接BC

CP是切線,則PCA=∠CBA,

RtPACRtCAB,

,而PC2=AC2-PA2,AC2=AB2-BC2,

其中PA=2

解得:AB=10,

則圓O的半徑為5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是(

A. 當(dāng)AB=BC時(shí),它是菱形;B. 當(dāng)∠ABC=90°時(shí),它是矩形;

C. 當(dāng)AC=BD時(shí),它是正方形;D. 當(dāng)AC⊥BD時(shí),它是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某學(xué)校七年級(jí)4個(gè)班共180人的體質(zhì)健康情況,從各班分別抽取同樣數(shù)量的男生和女生組成一個(gè)樣本,把體質(zhì)情況量化得分,規(guī)定得分x滿足x60為不及格,60≤x80為及格,80≤x90為良好,≥90為優(yōu)秀,下圖是根據(jù)樣本數(shù)據(jù)繪制的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

1)本次抽查的樣本容量是

2)請(qǐng)補(bǔ)全條形圖上的數(shù)字和扇形圖中的百分?jǐn)?shù).

3)請(qǐng)你估計(jì)全校七年級(jí)得分不低于90分的約有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)證明推斷:如圖(1),在正方形中,點(diǎn),分別在邊,上,于點(diǎn),點(diǎn),分別在邊上,

①求證:;

②推斷:的值為   ;

2)類(lèi)比探究:如圖(2),在矩形中,為常數(shù)).將矩形沿折疊,使點(diǎn)落在邊上的點(diǎn)處,得到四邊形,于點(diǎn),連接于點(diǎn).試探究CP之間的數(shù)量關(guān)系,并說(shuō)明理由;

3)拓展應(yīng)用:在(2)的條件下,連接,當(dāng)時(shí),若,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車(chē)為大眾出行提供了方便,如圖為單車(chē)實(shí)物圖,如圖為單車(chē)示意圖,AB與地面平行,點(diǎn)A、BD共線,點(diǎn)DF、G共線,坐墊C可沿射線BE方向調(diào)節(jié).已知,∠ABE=70°,∠EAB=45°,車(chē)輪半徑為0.3mBE=0.4m.小明體驗(yàn)后覺(jué)得當(dāng)坐墊C離地面高度為0.9m時(shí)騎著比較舒適,求此時(shí)CE的長(zhǎng).(結(jié)果精確到1cm)參考數(shù)據(jù):sin70≈0.94,cos70≈0.34,tan70≈2.75,≈1.41

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象過(guò)點(diǎn),點(diǎn)0不重合)是圖象上的一點(diǎn),直線過(guò)點(diǎn)且平行于軸.于點(diǎn),點(diǎn)

1)求二次函數(shù)的解析式;

2)求證:點(diǎn)在線段的中垂線上;

3)設(shè)直線交二次函數(shù)的圖象于另一點(diǎn),于點(diǎn),線段的中垂線交于點(diǎn),求的值;

4)試判斷點(diǎn)與以線段為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸,軸分別相交于點(diǎn),點(diǎn)在射線上,點(diǎn)在射線上,且,以為鄰邊作平行四邊形.設(shè)點(diǎn)的坐標(biāo)為,平行四邊形軸下方部分的面積為.求:

1)線段的長(zhǎng);

2關(guān)于的函數(shù)解析式,并直接寫(xiě)出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,)繞點(diǎn)順時(shí)針旋轉(zhuǎn)得,射線交射線于點(diǎn)

1的關(guān)系是   ;

2)如圖2,當(dāng)旋轉(zhuǎn)角為60°時(shí),點(diǎn),點(diǎn)與線段的中點(diǎn)恰好在同一直線上,延長(zhǎng)至點(diǎn),使,連接

的關(guān)系是   ,請(qǐng)說(shuō)明理由;

②如圖3,連接,若,,求線段的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年5月份是心理健康宣傳月,某中學(xué)開(kāi)展以“關(guān)心他人,關(guān)愛(ài)自己”為主題的心理健康系列活動(dòng).為了解師生的心理健康狀況,對(duì)全體2000名師生進(jìn)行了心理測(cè)評(píng),隨機(jī)抽取20名師生的測(cè)評(píng)分?jǐn)?shù)進(jìn)行了以下數(shù)據(jù)的整理與

①數(shù)據(jù)收集:抽取的20名師生測(cè)評(píng)分?jǐn)?shù)如下

8582,94,72,78,89,96,98,8465,73,54,83,76,7085,8363,92,90

②數(shù)據(jù)整理:將收集的數(shù)據(jù)進(jìn)行分組并評(píng)價(jià)等第:

分?jǐn)?shù)x

人數(shù)

5

a

5

2

1

等第

③數(shù)據(jù)繪制成不完整的扇形統(tǒng)計(jì)圖:

④依據(jù)統(tǒng)計(jì)信息回答問(wèn)題

1)統(tǒng)計(jì)表中的   

2)心理測(cè)評(píng)等第等的師生人數(shù)所占扇形的圓心角度數(shù)為   

3)學(xué)校決定對(duì)等的師生進(jìn)行團(tuán)隊(duì)心理輔導(dǎo),請(qǐng)你根據(jù)數(shù)據(jù)分析結(jié)果,估計(jì)有多少師生需要參加團(tuán)隊(duì)心理輔導(dǎo)?

查看答案和解析>>

同步練習(xí)冊(cè)答案