【題目】如圖,點P是⊙O 外一點,PA切⊙O于點A,AB是⊙O的直徑,連接OP,過點B作BC∥OP交⊙O于點C,連接AC交OP于點D.
(1)求證:PC是⊙O的切線;
(2)若PD=cm,AC=8cm,求圖中陰影部分的面積;
(3)在(2)的條件下,若點E是 的中點,連接CE,求CE的長.
【答案】(1)見解析; (2) ;(3) CE的長為cm
【解析】分析:(1)連接OC,證明△PAO≌△PCO,得到∠PCO=∠PAO=90°,證明結(jié)論;(2)證明△ADP∽△ODA,得到成比例線段求出BC的長,根據(jù)S陰=SO-S△ABC求出答案;(3)連接AE、BE,作BM⊥CE于M,分別求出CM和EM的長,求和得到答案.
詳解:證明: ⑴如圖,連接OC,∵PA切⊙O于A.
∴∠PAO=90.
∵OP∥BC,∴∠AOP=∠OBC,∠COP=∠OCB.∵OC=OB,∴∠OBC=∠OCB,
∴∠AOP=∠COP.
又∵OA=OC,OP=OP, ∴△PAO≌△PCO (SAS).∴∠PAO=∠PCO=90 ,
又∵OC是⊙O的半徑,
∴PC是⊙O的切線.
⑵解法不唯一. 解:由(1)得PA,PC都為圓的切線,
∴PA=PC,OP平分∠APC,∠ADO=∠PAO=90 ,∴∠PAD+∠DAO=∠DAO+∠AOD,
∴∠PAD =∠AOD,
∴△ADO∽△PDA.
∴,∴,∵AC=8, PD=,
∴AD=AC=4,OD=3,AO=5,
由題意知OD為△ABC的中位線,∴BC=2OD=6,AB=10.
∴S陰=S半⊙O-S△ACB=.
答:陰影部分的面積為.
(3)如圖,連接AE,BE,過點B作BM⊥CE于點M.
∴∠CMB=∠EMB=∠AEB=90,又∵點E是的中點,
∴∠ECB=∠CBM=∠ABE=45,CM=MB =,BE=ABcos450 =,
∴ EM=,/span>∴CE=CM+EM= .
答:CE的長為cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級學(xué)生小麗、小強和小紅到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作.已知該水果的進價為8元/千克,下面是他們在活動結(jié)束后的對話.
小麗:如果以10元/千克的價格銷售,那么每天可售出300千克.
小強:如果每千克的利潤為3元,那么每天可售出250千克.
小紅:如果以13元/千克的價格銷售,那么每天可獲取利潤750元.
【利潤=(銷售價-進價)銷售量】
(1)請根據(jù)他們的對話填寫下表:
銷售單價x(元/kg) | 10 | 11 | 13 |
銷售量y(kg) |
(2)請你根據(jù)表格中的信息判斷每天的銷售量y(千克)與銷售單價x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x>0)的函數(shù)關(guān)系式;
(3)設(shè)該超市銷售這種水果每天獲取的利潤為W元,求W與x的函數(shù)關(guān)系式.當(dāng)銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E在正方形ABCD的邊AB上,連接DE,過點C作CF⊥DE于F,過點A作AG∥CF交DE于點G.
(1)求證:△DCF≌△ADG.
(2)若點E是AB的中點,設(shè)∠DCF=α,求sinα的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正五邊形的邊長為2,連接對角線AD,BE,CE,線段AD分別與BE和CE相交于點M,N,給出下列結(jié)論:①∠AME=108°;②;③MN=;④.其中正確結(jié)論的序號是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是正方形,是邊所在直線上的點,,且交正方形外角的平分線于點.
(1)當(dāng)點在線段中點時(如圖①),易證,不需證明;
(2)當(dāng)點在線段上(如圖②)或在線段延長線上(如圖③)時,(1)中的結(jié)論是否仍然成立?請寫出你的猜想,并選擇圖②或圖③的一種結(jié)論給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,順次連接正方形ABCD四邊的中點得到第一個正方形A1B1C1D1,再順次連接正方形A1B1C1D1四邊的中點得到第二個正方形A2B2C2D2…,以此類推,則第2018個正方形A2018B2018C2018D2018的周長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的頂點B的坐標(biāo)為(4,2),D是OA的中點,OE⊥CD交BC于點E,點P從點O出發(fā),以每秒2個單位長度的速度沿射線OE運動.
(1)求直線OE的解析式;
(2)設(shè)以C,P,D,B為頂點的凸四邊形的面積為S,點P的運動時間為t(單位:秒),求S關(guān)于t的函數(shù)解析式,并寫出自變量t的取值范圍;
(3)設(shè)點N為矩形的中心,則在點P運動過程中,是否存在點P,使以P,C,N為頂點的三角形是直角三角形?若存在,請直接寫出t的值及點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.
(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請你設(shè)計出來;
(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品總利潤為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關(guān)系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com