【題目】如圖,已知拋物線與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).
(1)求該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)拋物線上的一個(gè)動(dòng)點(diǎn)P的橫坐標(biāo)為t(0<t<3),過(guò)點(diǎn)P作PD⊥BC于點(diǎn)D. ① 求線段PD的長(zhǎng)的最大值;② 當(dāng)BD=2CD時(shí),求t的值;
(3)若點(diǎn)Q是拋物線的對(duì)稱軸上的動(dòng)點(diǎn),拋物線上存在點(diǎn)M,使得以B、C、Q、M為頂點(diǎn)的四邊形為平行四邊形,請(qǐng)求出所有滿足條件的點(diǎn)M的坐標(biāo).
【答案】(1) y=-x2+2x+3;(2)①;②2;(3) (2,3)或(4,-5)或(-2,-5).
【解析】試題分析: (1)將A、B、C三點(diǎn)的坐標(biāo)代入y=a(x+1)(x-3)即可求出拋物線的解析式.
(2)①過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E,交BC于點(diǎn)F,求出△PBC的最大面積,即可求出PD的最大值.
②過(guò)點(diǎn)D作DG⊥x軸于點(diǎn)G,由于DG∥OC,從而可知,從而可求出t的值.
(3)由于BC是B、C、Q、M為頂點(diǎn)的四邊形中的一條固定的線段,因此將此線段分為平行四邊形的邊和對(duì)角線進(jìn)行討論即可求出M的坐標(biāo).
試題解析:
(1)設(shè)拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式為
將A(-1,0),B(3,0),C(0,3)代入得:
解得:
∴拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式為
(2)①設(shè)點(diǎn)P的坐標(biāo)為(t, )
過(guò)P作PN⊥x軸于點(diǎn)F,交BC于點(diǎn)E
設(shè)直線BC解析式為y=kx+b
把B(3,0),C(0,3)代入y=kx+b得
解得:k=-1,b=3
∴直線BC解析式為y=-x+3
∴點(diǎn)E坐標(biāo)為(t, )
PE=-()=
∵OB=OC=3,∴∠OBC=45°
∵PD⊥BC
∴∠PED=45°
∴PD=PE×sin45°=PE=()=-
∴當(dāng)t=時(shí),PD的最大面積為
②過(guò)D作DG⊥x軸于點(diǎn)G,則DG∥OC
∴△BOC∽△BGD
∴
當(dāng)BD=2CD時(shí),BD:BC=2:3
∴DG=2,即點(diǎn)D的縱坐標(biāo)為2
把y=2代入y=-x+3得x=1
∴D點(diǎn)坐標(biāo)為(1,2)
設(shè)直線PD解析式為:y=x+b
把D(1,2)代入上式得:
2=1+b,
解得:b=1
∴直線PD解析式為y=x+1
解方程組得: , ( 舍去)
∴當(dāng)BD=2CD時(shí),t的值為2
{或∵△PDE是等腰直角三角形,∴)
即,
解得: , ( 舍去)}
(3)∵點(diǎn)Q是拋物線的對(duì)稱軸x=1上的動(dòng)點(diǎn),
∴點(diǎn)Q的橫坐標(biāo)為1,
∵點(diǎn)M在拋物線上,∴設(shè)點(diǎn)M的坐標(biāo)為(m, )
(I)如圖,當(dāng)BC、QM為平行四邊形的對(duì)角線時(shí),
可得:
即:3=1+m,
∴m=2
∴點(diǎn)M坐標(biāo)為(2,3)
(II)如圖,當(dāng)BQ、MC為平行四邊形的對(duì)角線時(shí),
可得:
即:3+1=m,
∴m=4
∴點(diǎn)M坐標(biāo)為(4,-5)
(III)如圖,當(dāng)BM、QC為平行四邊形的對(duì)角線時(shí),
可得:
即:3+m=1,
∴m=-2
∴點(diǎn)M坐標(biāo)為(-2,-5)
綜合以上所述,滿足平行四邊形的點(diǎn)M的坐標(biāo)為(2,3)或(4,-5)或(-2,-5)
點(diǎn)睛: 本題難度較大,考查的是二次函數(shù)圖象與解析式的靈活運(yùn)用,一般這樣題目都是作為壓軸題出現(xiàn),考生平時(shí)應(yīng)多積累二次函數(shù)的綜合知識(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列是隨機(jī)事件的是( )
A. 口袋里共有5個(gè)球,都是紅球,從口袋里摸出1個(gè)球是黃球
B. 平行于同一條直線的兩條直線平行
C. 擲一枚圖釘,落地后圖釘針尖朝上
D. 擲一枚質(zhì)地均勻的骰子,擲出的點(diǎn)數(shù)是7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列事件中,是不確定事件的是( )
A. 三條線段可以組成一個(gè)三角形B. 內(nèi)錯(cuò)角相等,兩條直線平行
C. 對(duì)頂角相等D. 平行于同一條直線的兩條直線平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】周末,牛牛去圖書(shū)城買(mǎi)書(shū),導(dǎo)購(gòu)員阿姨對(duì)牛牛說(shuō):“你在這里花10元錢(qián)辦一張會(huì)員卡,買(mǎi)書(shū)可以享受9折優(yōu)惠哦。”牛牛在心里算了一算發(fā)現(xiàn),如果辦一張會(huì)員卡,再把自己想要的書(shū)全買(mǎi)了還可以節(jié)省8元錢(qián),于是很快就去辦了一張會(huì)員卡。請(qǐng)問(wèn):你知道牛牛所買(mǎi)的書(shū)籍原價(jià)一共要多少錢(qián)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E是AD上一點(diǎn),AB=8,BE=BC=10,動(dòng)點(diǎn)P在線段BE上(與點(diǎn)B、E不重合),點(diǎn)Q在BC的延長(zhǎng)線上,PE=CQ,PQ交EC于點(diǎn)F,PG∥BQ交EC于點(diǎn)G,設(shè)PE=x.
(1)求證:△PFG≌△QFC
(2)連結(jié)DG.當(dāng)x為何值時(shí),四邊形PGDE是菱形,請(qǐng)說(shuō)明理由;
(3)作PH⊥EC于點(diǎn)H.探究:
①點(diǎn)P在運(yùn)動(dòng)過(guò)程中,線段HF的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不變,求HF的長(zhǎng)度;
②當(dāng)x為何值時(shí),△PHF與△BAE相似
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰三角形的兩條邊長(zhǎng)分別是7和3,則下列四個(gè)數(shù)中,第三條邊的長(zhǎng)是( 。
A. 8 B. 7 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)A(3,﹣5)向上平移4個(gè)單位,再向左平移3個(gè)單位到點(diǎn)B,則點(diǎn)B的坐標(biāo)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com