【題目】如圖,在△ABC中,已知∠C=90°,AC=BC=4,DAB的中點(diǎn),點(diǎn)E,F分別在AC,BC上運(yùn)動(dòng),(點(diǎn)E不與點(diǎn)A,C重合),且保持AE=CF,連接DE,EF,再次運(yùn)動(dòng)變化過(guò)程中,有下列結(jié)論:①四邊形CEDF有可能成為正方形;②△DFE是等腰直角三角形;③四邊形CEDF的面積是定值.其中正確的結(jié)論是:______________

【答案】①②③

【解析】

①連接CD,當(dāng)EAC中點(diǎn),FBC中點(diǎn)時(shí),四邊形CEDF為正方形;
②由SAS定理可證CDFADE全等,從而可證∠EDF=90°,DE=DF.所以DFE是等腰直角三角形;
③由②△ADE≌△CDF,就有SADE=SCDF,再通過(guò)等量代換就可以求出結(jié)論;

解:①連接CD,當(dāng)EF分別為AC、BC中點(diǎn)時(shí),


∵△ABC是等腰直角三角形,DAB的中點(diǎn),
ACDBCD均為等腰直角三角形,
DF=DE=CE=CF,
∵∠ACB=90°,
∴四邊形CDFE是正方形,故此選項(xiàng)正確;
②∵△ABC是等腰直角三角形,
∴∠DCB=A=45°,CD=AD=DB;
∵在ADECDF中,


∴△ADE≌△CDFSAS);
ED=DF,∠CDF=EDA;
∵∠ADE+EDC=90°
∴∠EDC+CDF=EDF=90°,
∴△DFE是等腰直角三角形.故此選項(xiàng)正確;
③∵△ADE≌△CDF
SADE=SCDF
S四邊形CEDF=SCED+SCFD,
S四邊形CEDF=SCED+SAED,
S四邊形CEDF=SADC

∴四邊形CEDF的面積是定值4,故本選項(xiàng)正確;

故答案為:①②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分9分)如圖,在矩形ABCD中,EAB邊的中點(diǎn),沿EC對(duì)折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,連結(jié)AP并延長(zhǎng)APCDF點(diǎn),

1)求證:四邊形AECF為平行四邊形;

2)若△AEP是等邊三角形,連結(jié)BP,求證:△APB≌△EPC;

3)若矩形ABCD的邊AB=6,BC=4,求△CPF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD為矩形,對(duì)角線AC、BD相交于點(diǎn)O,ADAO.點(diǎn)E、F為矩形邊上的兩個(gè)動(dòng)點(diǎn),且∠EOF60°

1)如圖1,當(dāng)點(diǎn)E、F分別位于ABAD邊上時(shí),若∠OEB75°,求證:DFAE

2)如圖2,當(dāng)點(diǎn)EF同時(shí)位于AB邊上時(shí),若∠OFB75°,試說(shuō)明AFBE的數(shù)量關(guān)系;

3)如圖3,當(dāng)點(diǎn)EF同時(shí)在AB邊上運(yùn)動(dòng)時(shí),將△OEF沿OE所在直線翻折至△OEP,取線段CB的中點(diǎn)Q.連接PQ,若AD2aa0),則當(dāng)PQ最短時(shí),求PF之長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】201912月以來(lái),湖北省武漢市發(fā)現(xiàn)一種新型冠狀病毒感染引起的急性呼吸道傳染。腥菊叩呐R床表現(xiàn)為:以發(fā)熱、乏力、干咳為主要表現(xiàn).約半數(shù)患者多在一周后出現(xiàn)呼吸困難,嚴(yán)重者快速進(jìn)展為急性呼吸窘迫綜合征、膿毒癥休克、難以糾正的代謝性酸中毒和出凝血功能障礙.國(guó)家衛(wèi)健委已發(fā)布1號(hào)公告,將新型冠狀病毒感染的肺炎納入傳染病防治法規(guī)定的乙類傳染病,但采取甲類傳染病的預(yù)防、控制措施,同時(shí)將其納入檢疫傳染病管理.

1)在“新冠”初期,有2人感染了“新冠”,經(jīng)過(guò)兩輪傳染后共有288人感染了“新冠”(這兩輪感染均未被發(fā)現(xiàn)未被隔離),則每輪傳染中平均一個(gè)人傳染了幾個(gè)人?

2)某小區(qū)物管為預(yù)防業(yè)主感染傳播購(gòu)買型和型兩種口罩,購(gòu)買口罩花費(fèi)了2500元,購(gòu)買口罩花費(fèi)了2000元,且購(gòu)買口罩?jǐn)?shù)量是購(gòu)買口罩?jǐn)?shù)量的2倍,已知購(gòu)買一個(gè)口罩比購(gòu)買一個(gè)口罩多花3元?jiǎng)t該物業(yè)購(gòu)買兩種口罩的單價(jià)為多少元?

3)由于實(shí)際需要,該物業(yè)決定再次購(gòu)買這兩種口罩,已知此次購(gòu)進(jìn)型和型兩種口罩的數(shù)量一共為1000個(gè),恰逢市場(chǎng)對(duì)這兩種口罩的售價(jià)進(jìn)行調(diào)整,口罩售價(jià)比第一次購(gòu)買時(shí)提高了,口罩按第一次購(gòu)買時(shí)售價(jià)的15倍出售,如果此次購(gòu)買型和型這兩種口罩的總費(fèi)用不超過(guò)7800元,那么此次最多可購(gòu)買多少個(gè)口罩?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】南海是我國(guó)的南大門,如圖所示,某天我國(guó)一艘海監(jiān)執(zhí)法船在南海海域正在進(jìn)行常態(tài)化巡航,在A處測(cè)得北偏東30°方向上,距離為20海里的B處有一艘不明身份的船只正在向正東方向航行,便迅速沿北偏東75°的方向前往監(jiān)視巡查,經(jīng)過(guò)一段時(shí)間后,在C處成功攔截不明船只,問(wèn)我海監(jiān)執(zhí)法船在前往監(jiān)視巡查的過(guò)程中行駛了多少海里最后結(jié)果保留整數(shù)

參考數(shù)據(jù):cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C90°,AB10cm,cosB點(diǎn)MN分別是邊BCAC上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M2cm/s的速度沿CB方向運(yùn)動(dòng),同時(shí)點(diǎn)N1cm/s的速度沿AC方向運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t,四邊形ABMN的面積為S,則下列能大致反映St函數(shù)關(guān)系的圖象是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,點(diǎn)E的中點(diǎn),連接,過(guò)點(diǎn)D于點(diǎn)F,過(guò)點(diǎn)C于點(diǎn)N,延長(zhǎng)于點(diǎn)M

1)求證:

2)連接CF,并延長(zhǎng)CFABG

①若,求的長(zhǎng)度;

②探究當(dāng)為何值時(shí),點(diǎn)G恰好為AB的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫做圓周角,一條弧所對(duì)的圓周角的度數(shù)等于它所對(duì)的圓心角度數(shù)的一半.類似地,我們定義:頂點(diǎn)在圓外,并且兩邊都和圓相交的角叫做圓外角.

1)判斷:圖中有沒(méi)有圓外角?如果有,請(qǐng)用字母表示出來(lái).

2)運(yùn)用所學(xué)的數(shù)學(xué)知識(shí),探究:圓外角的度數(shù)與它所夾的弧所對(duì)的圓心角的度數(shù)有什么關(guān)系?將你的發(fā)現(xiàn),用文字表述出來(lái),并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大學(xué)畢業(yè)生小李自主創(chuàng)業(yè),開(kāi)了一家小商品超市.已知超市中某商品的進(jìn)價(jià)為每件20元,售價(jià)為每件30元,每個(gè)月可賣出180件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月就會(huì)少賣出10件,但每件售價(jià)必須低于34元,設(shè)每件商品的售價(jià)上漲元(為非負(fù)整數(shù)),每個(gè)月的銷售利潤(rùn)為.

1)求的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;

2)利用函數(shù)關(guān)系式求出每件商品的售價(jià)為多少元時(shí),每個(gè)月可獲得最大利潤(rùn)?最大利潤(rùn)是多少?

3)利用函數(shù)關(guān)系式求出每件商品的售價(jià)定為多少元時(shí),每個(gè)月的利潤(rùn)恰好是1920元?這時(shí)每件商品的利潤(rùn)率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案