精英家教網(wǎng)如圖,已知⊙O的半徑為R,直徑AB⊥CD以B為圓心,以BC為半徑作弧CED.求弧CED與弧CAD圍成的新月形ACED的面積S.
分析:由圖知,△BCD是等腰直角三角形,故陰影的面積等于半圓的面積減去扇形BCD的面積后,加上等腰直角三角形BCD的面積.
解答:解:∵CD⊥BA,OC=OD=OB,
∴△BCD是等腰直角三角形,CB⊥BD,BC=
2
R.
∴S陰影=S半圓CDA-S扇形BCD+S△BCD=
1
2
πR2-
1
4
π•(
2
R)2+
1
2
×(
2
R)2=R2
點評:本題關鍵是判定出△BCD是等腰直角三角形,然后利用圓和扇形、等腰直角三角形的面積公式求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O的半徑為6cm,射線PM經(jīng)過點O,OP=10cm,射線PN與⊙O相切于點Q.A,B兩點同時從點精英家教網(wǎng)P出發(fā),點A以5cm/s的速度沿射線PM方向運動,點B以4cm/s的速度沿射線PN方向運動.設運動時間為ts.
(1)求PQ的長;
(2)當t為何值時,直線AB與⊙O相切?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為1,銳角△ABC內(nèi)接于⊙O,作BD⊥AC于點D,OM⊥AB于點M.sin∠CBD=
13
.則OM=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,銳角△ABC內(nèi)接于⊙O,弦AB=8,BD⊥AC于點D,OM⊥AB于點M,則sin∠CBD的值等于( 。
A、0.6B、0.8C、0.5D、1.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•新疆)如圖,已知⊙O的半徑為4,CD是⊙O的直徑,AC為⊙O的弦,B為CD延長線上的一點,∠ABC=30°,且AB=AC.
(1)求證:AB為⊙O的切線;
(2)求弦AC的長;
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的半徑為5,兩弦AB、CD相交于AB中點E,且AB=8,CE:ED=4:9,則圓心到弦CD的距離為( 。
A、
2
14
3
B、
28
9
C、
2
7
3
D、
80
9

查看答案和解析>>

同步練習冊答案