精英家教網 > 初中數學 > 題目詳情

【題目】某校召開運動會,七(1)班學生到超市分兩次(第二次少于第一次)購買某種飲料90瓶,共用去205元,已知該種飲料價格如下:

購買瓶數/

不超過30

30以上不超過50

50以上

單價/

3

2.5

2

求:兩次分別購買這種飲料多少瓶?

【答案】第一次購買65瓶,第二次購買25.

【解析】

設第一次購買這種飲料瓶,則第二次購買這種飲料瓶,根據總付費205元,分三種情況列方程式求解.

解:設第一次購買這種飲料瓶,則第二次購買這種飲料.

1)若第一次購買這種飲料50瓶以上,第二次購買這種飲料30瓶以下,

解得:

因為,,所以這種情況成立.

2)若第一次購買這種飲料50瓶以上,第二次購買這種飲料30瓶以上,

解得:

.

因為,所以這種情況不成立.

3)若第一次第二次均購買這種飲料30瓶以上,但不超過50.

因為,所以這種情況不成立.

答:第一次購買飲料65瓶,則第二次購買這種飲料25.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,二次函數y=ax2+bx+c(a>0)的圖象的頂點為點D,其圖象與x軸的交點A、B的橫坐標分別為-1,3,與y軸負半軸交于點C.在下面五個結論中:①2a-b=0;a+b+c>0;c=-3a;④只有當a=時,ABD是等腰直角三角形;⑤使ACB為等腰三角形的a的值有4個.其中正確的結論是________(只填序號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】典典同學學完統(tǒng)計知識后,隨機調查了她家所在轄區(qū)若干名居民的年齡,將調查數據繪制成如下扇形和條形統(tǒng)計圖:

請根據以上不完整的統(tǒng)計圖提供的信息,解答下列問題:

(1)扇形統(tǒng)計圖中a=   ,b=   ;并補全條形統(tǒng)計圖;

(2)若該轄區(qū)共有居民3500人,請估計年齡在0~14歲的居民的人數.

(3)一天,典典知道了轄區(qū)內60歲以上的部分老人參加了市級門球比賽,比賽的老人們分成甲、乙兩組,典典很想知道甲乙兩組的比賽結果,王大爺告訴說,甲組與乙組的得分和為110,甲組得分不低于乙組得分的1.5倍,甲組得分最少為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,甲、乙兩人以相同路線前往離學校12千米的地方參加植樹活動.分析甲、乙兩人前往目的地所行駛的路程S(千米)隨時間t(分鐘)變化的函數圖象,解決下列問題:

(1)求出甲、乙兩人所行駛的路程S、St之間的關系式;

(2)甲行駛10分鐘后,甲、乙兩人相距多少千米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1探究:如圖1和2,四邊形ABCD中,已知AB=AD,BAD=90°,點E、F分別在BC、CD上,EAF=45°

如圖1,若B、ADC都是直角,把ABE繞點A逆時針旋轉90°至ADG,使AB與AD重合,則能證得EF=BE+DF,請寫出推理過程;

如圖2,若B、D都不是直角,則當B與D滿足數量關系 時,仍有EF=BE+DF;

2拓展:如圖3,在ABC中,BAC=90°,AB=AC=2,點D、E均在邊BC上,且DAE=45°若BD=1,求DE的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】當前,交通擁堵是城市管理的一大難題.我市城東高架橋的開通為分流過境車輛、緩解市內交通壓力 起到了關鍵作用,但為了保證安全,高架橋上最高限速 80 千米/小時.在一般條件下,高架橋上的車流 速度 v(單位:千米/小時)是車流密度 x(單位:輛/千米)的函數,當橋上的車流密度達到 180 輛/千 米時,造成堵塞,此時車流速度為 0;當 0≤x≤20 時,橋上暢通無阻,車流速度都為 80 千米/小時, 研究表明:當 20≤x≤180 時,車流速度 v 是車流密度 x 的一次函數.

(1)當 0≤x≤20 和 20≤x≤180 時,分別寫出函數 v 關于 x 的函數關系式;

(2)當車流密度 x 為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)w=x·v可以達到最大,并求出最大值;

(3)某天早高峰(7:30—9:30)經交警部門控制管理,橋上的車流速度始終保持 40 千米/小時,問這天 早高峰期間高架橋分流了多少輛車?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,動點A從原點出發(fā)向數軸負方向運動,同時,動點B也從原點出發(fā)向數軸正方向運動,3秒后兩點相距15個單位長度,已知動點A、B的速度比是1:4(速度單位:1單位長度/秒)。

(1)求兩個動點運動的速度,并在數軸上標出A、B兩點從原點出發(fā)運動3秒時的位置;

(2)若A、B兩點分別從(1)中標出的位置同時向數軸負方向運動,問經過幾秒,原點恰好處在兩個動點的正中間?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E為CD上一點,將△BCE沿BE翻折后點C恰好落在AD邊上的點F處,將線段EF繞點F旋轉,使點E落在BE上的點G處,連接CG.

(1)證明:四邊形CEFG是菱形;

(2)若AB=8,BC=10,求四邊形CEFG的面積;

(3)試探究當線段AB與BC滿足什么數量關系時,BG=CG,請寫出你的探究過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,四邊形OBCD是正方形,D(0,2),E是線段OB延長線上一點,M是線段OB上一動點(不包括點O、B),作MNDM,垂足為M,交∠CBE的平分線于點N.

(1)寫出點C的坐標;

(2)求證:MD=MN;

(3)連接DNBC于點F,連接FM,下列兩個結論:①FM的長度不變;②MN平分∠FMB,其中只有一個結論是正確的,請你指出正確的結論,并給出證明

查看答案和解析>>

同步練習冊答案