【題目】某校召開運動會,七(1)班學生到超市分兩次(第二次少于第一次)購買某種飲料90瓶,共用去205元,已知該種飲料價格如下:
購買瓶數/瓶 | 不超過30 | 30以上不超過50 | 50以上 |
單價/元 | 3 | 2.5 | 2 |
求:兩次分別購買這種飲料多少瓶?
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c(a>0)的圖象的頂點為點D,其圖象與x軸的交點A、B的橫坐標分別為-1,3,與y軸負半軸交于點C.在下面五個結論中:①2a-b=0;②a+b+c>0;③c=-3a;④只有當a=時,△ABD是等腰直角三角形;⑤使△ACB為等腰三角形的a的值有4個.其中正確的結論是________(只填序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】典典同學學完統(tǒng)計知識后,隨機調查了她家所在轄區(qū)若干名居民的年齡,將調查數據繪制成如下扇形和條形統(tǒng)計圖:
請根據以上不完整的統(tǒng)計圖提供的信息,解答下列問題:
(1)扇形統(tǒng)計圖中a= ,b= ;并補全條形統(tǒng)計圖;
(2)若該轄區(qū)共有居民3500人,請估計年齡在0~14歲的居民的人數.
(3)一天,典典知道了轄區(qū)內60歲以上的部分老人參加了市級門球比賽,比賽的老人們分成甲、乙兩組,典典很想知道甲乙兩組的比賽結果,王大爺告訴說,甲組與乙組的得分和為110,甲組得分不低于乙組得分的1.5倍,甲組得分最少為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,甲、乙兩人以相同路線前往離學校12千米的地方參加植樹活動.分析甲、乙兩人前往目的地所行駛的路程S(千米)隨時間t(分鐘)變化的函數圖象,解決下列問題:
(1)求出甲、乙兩人所行駛的路程S甲、S乙與t之間的關系式;
(2)甲行駛10分鐘后,甲、乙兩人相距多少千米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)探究:如圖1和2,四邊形ABCD中,已知AB=AD,∠BAD=90°,點E、F分別在BC、CD上,∠EAF=45°.
①如圖1,若∠B、∠ADC都是直角,把△ABE繞點A逆時針旋轉90°至△ADG,使AB與AD重合,則能證得EF=BE+DF,請寫出推理過程;
②如圖2,若∠B、∠D都不是直角,則當∠B與∠D滿足數量關系 時,仍有EF=BE+DF;
(2)拓展:如圖3,在△ABC中,∠BAC=90°,AB=AC=2,點D、E均在邊BC上,且∠DAE=45°.若BD=1,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】當前,交通擁堵是城市管理的一大難題.我市城東高架橋的開通為分流過境車輛、緩解市內交通壓力 起到了關鍵作用,但為了保證安全,高架橋上最高限速 80 千米/小時.在一般條件下,高架橋上的車流 速度 v(單位:千米/小時)是車流密度 x(單位:輛/千米)的函數,當橋上的車流密度達到 180 輛/千 米時,造成堵塞,此時車流速度為 0;當 0≤x≤20 時,橋上暢通無阻,車流速度都為 80 千米/小時, 研究表明:當 20≤x≤180 時,車流速度 v 是車流密度 x 的一次函數.
(1)當 0≤x≤20 和 20≤x≤180 時,分別寫出函數 v 關于 x 的函數關系式;
(2)當車流密度 x 為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)w=x·v可以達到最大,并求出最大值;
(3)某天早高峰(7:30—9:30)經交警部門控制管理,橋上的車流速度始終保持 40 千米/小時,問這天 早高峰期間高架橋分流了多少輛車?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,動點A從原點出發(fā)向數軸負方向運動,同時,動點B也從原點出發(fā)向數軸正方向運動,3秒后兩點相距15個單位長度,已知動點A、B的速度比是1:4(速度單位:1單位長度/秒)。
(1)求兩個動點運動的速度,并在數軸上標出A、B兩點從原點出發(fā)運動3秒時的位置;
(2)若A、B兩點分別從(1)中標出的位置同時向數軸負方向運動,問經過幾秒,原點恰好處在兩個動點的正中間?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E為CD上一點,將△BCE沿BE翻折后點C恰好落在AD邊上的點F處,將線段EF繞點F旋轉,使點E落在BE上的點G處,連接CG.
(1)證明:四邊形CEFG是菱形;
(2)若AB=8,BC=10,求四邊形CEFG的面積;
(3)試探究當線段AB與BC滿足什么數量關系時,BG=CG,請寫出你的探究過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,四邊形OBCD是正方形,且D(0,2),點E是線段OB延長線上一點,M是線段OB上一動點(不包括點O、B),作MN⊥DM,垂足為M,交∠CBE的平分線于點N.
(1)寫出點C的坐標;
(2)求證:MD=MN;
(3)連接DN交BC于點F,連接FM,下列兩個結論:①FM的長度不變;②MN平分∠FMB,其中只有一個結論是正確的,請你指出正確的結論,并給出證明
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com