如圖,點A是雙曲線y=
k-1x
與直線y=-x-k在第二象限內(nèi)的交點,AB⊥x軸于B,且S△ABO=3
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A、C的坐標和△AOC的面積.
分析:(1)先設(shè)A點坐標為(a,b),則OB=-a,AB=b,根據(jù)三角形面積公式得到
1
2
•(-a)•b=3,即ab=-6;再把A(a,b)代入反比例函數(shù)解析式中得到ab=k-1,則有
k-1=-6,解得k=-5,這樣可確定兩函數(shù)解析式;
(2)先利用直線y=-x+5確定D點坐標,再解有兩個解析式所組成的方程組得到A點和C點坐標,然后利用S△AOC=S△AOD+S△COD進行計算.
解答:解:(1)設(shè)A點坐標為(a,b),則OB=-a,AB=b,
則S△ABO=
1
2
OB•AB=
1
2
•(-a)•b=3,
ab=-6,
把A(a,b)代入y=
k-1
x
得ab=k-1,
則k-1=-6,
解得k=-5,
故反比例函數(shù)的解析式為y=-
6
x
,直線的解析式為y=-x+5;
(2)直線AC交x軸于D點,
對于y=-x+5,令y=0,則x=5,
則D點坐標為(5,0),
解方程組
y=-
6
x
y=-x+5
x=6
y=-1
x=-1
y=6
,
則點A的坐標為(-1,6),C點坐標為(6,-1),
則S△AOC=S△AOD+S△COD=
1
2
×5×6+
1
2
×5×1=
35
2
點評:本題考查了反比例函數(shù)與一次函數(shù)的交點問題:反比例函數(shù)與一次函數(shù)的交點坐標滿足兩函數(shù)的解析式.也考查了三角形的面積公式.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點A是雙曲線y=
8x
(x>0)上的一點,P為x軸正半軸上的一點,且點P的坐標為(4,0),將A點繞P點順時針旋轉(zhuǎn)90°,恰好落在此雙曲線上的另一點B,則B點的坐標為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•蕭山區(qū)模擬)如圖,點P是雙曲線y=
4
3
x
(x>0)上動點,在y軸上取點Q,使得以P、Q、O 為頂點的三角形是含有30°角的直角三角形,則符合條件的點Q的坐標是
(0,2
3
)、(0,2)、(0,
8
3
3
)、(0,8)
(0,2
3
)、(0,2)、(0,
8
3
3
)、(0,8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點P是雙曲線y=
4
x
(x>0)
上一個動點,點Q為線段OP的中點,則⊙Q的面積不可能是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•南通二模)如圖,點A是雙曲線y=
4
x
在第一象限上的一動點,連接AO并延長交另一分支于點B,以AB為斜邊作等腰Rt△ABC,點C在第二象限,隨著點A的運動,點C的位置也不斷的變化,但始終在一函數(shù)圖象上運動,則這個函數(shù)的解析式為
y=-
4
x
y=-
4
x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點M是雙曲線y=
2
x
上一點,ME⊥y軸,MF⊥x軸,直線y=-x+m交坐標軸于A、B兩點,交ME于C點,交MF于D點,則AD•BC=
2
2
2
2

查看答案和解析>>

同步練習冊答案