【題目】若三角形的一條角平分線與被平分的角的一邊相等,則稱這個(gè)三角形為弱等腰三角形,這條角平分線叫做這個(gè)三角形的弱線,如圖①,AD是△ABC的角平分線,當(dāng)ADAB時(shí),則△ABC弱等腰三角形,線段AD是△ABC弱線

1)如圖②,在△ABC中.∠B60°,∠C45°.求證:△ABC弱等腰三角形;

2)如圖③,在矩形ABCD中,AB3,BC4.以B為圓心在矩形內(nèi)部作,交BC于點(diǎn)E,點(diǎn)F上一點(diǎn),連結(jié)CF.且CF有另一個(gè)交點(diǎn)G.連結(jié)BG.當(dāng)BG是△BCF的“弱線”時(shí),求CG的長(zhǎng).

3)已知△ABC是“弱等腰三角形”,AD是“弱線”,且AB3BD,求ACBC的值.

【答案】1)見(jiàn)解析;(22;(32417

【解析】

1)根據(jù)角平分線的定義得到∠DBCABC30°,根據(jù)三角形的內(nèi)角和得到∠A180°﹣∠ABC﹣∠C180°60°45°75°,于是得到結(jié)論;

2)如圖③,連接EG,根據(jù)角平分線的定義得到∠FBG=∠GBE,根據(jù)全等三角形的性質(zhì)得到∠BGF=∠BGE,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;

3)①如圖④,當(dāng)ABAD時(shí),在AC上取一點(diǎn)E,使得AEAB,連接DE,根據(jù)角平分線的定義得到∠FBG=∠GBE,根據(jù)全等三角形的性質(zhì)得到∠BGF=∠BGE,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;②當(dāng)ACAD時(shí),如圖⑤,在AB上取一點(diǎn)E,使AEAC,連接DE,同理可得結(jié)論.

1)證明:如圖②作△ABC的角平分線BD,交ACD,

∴∠DBCABC30°,

∵∠ABC60°,∠C45°,

∴∠A180°﹣∠ABC﹣∠C180°60°45°75°,

∵∠ADB=∠DBC+C30°+45°75°,

∴∠ADB=∠A

BABD,

∴△ABC弱等腰三角形

2)如圖③,連接EG,

BG是△BCF弱線,

BG平分∠FBC,

∴∠FBG=∠GBE,

BFBE,BGBG,

∴△BGF≌△BGESAS),

∴∠BGF=∠BGE,

BGBE

∴∠BGE=∠BEG180°﹣∠GBE),

∴∠FGE180°﹣∠GBE,

∵∠CGE180°﹣∠FGE

∴∠CGE=∠CBG,

∵∠GCE=∠BCG

∴△GCE∽△BCG,

,

CE431,

CG2CEBC1×44

CG2;

3)①如圖④,當(dāng)ABAD時(shí),在AC上取一點(diǎn)E,使得AEAB,連接DE,

AD弱線,

AD是△ABC的角平分線,

∴∠BAD=∠CAD,

ADAD,

∴△ABD≌△AEDSAS),

DEBD,∠B=∠AED

ADAB,

∴∠B=∠ADB

∴∠AED=∠ADB,

∴∠CED180°﹣∠AED,∠ADC180°﹣∠ADB

∴∠CED=∠ADC,

∵∠C=∠C

∴△ADC∽△DEC,

CECD,CDAC

CEAC,

CEAEBD,CD3CEBD

AC9CEBD,

BCBD+BDBD,

ACBC2717

②當(dāng)ACAD時(shí),如圖⑤,在AB上取一點(diǎn)E,使AEAC,連接DE,

同理可得, ,即,由上面計(jì)算可得,BCCD

AC3CD,

ACBC2417

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個(gè)不相等的實(shí)數(shù)根.

其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ACE中,CACE,∠CAE30°,⊙O經(jīng)過(guò)點(diǎn)C,且圓的直徑AB在線段AE上.點(diǎn)D是線段AC上任意一點(diǎn)(不含端點(diǎn)),連接OD,當(dāng)AB4時(shí),則CD+OD的最小值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)y(k0)的圖象交于AB點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A的半標(biāo)為(23)

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)如圖,若將點(diǎn)C沿y軸向上平移4個(gè)單位長(zhǎng)度至點(diǎn)F,連接AF、BF,求△ABF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在6×5的網(wǎng)格(小正方形邊長(zhǎng)為1)中,RtABC的三個(gè)頂點(diǎn)都在格點(diǎn)上.

1)在網(wǎng)格中,找到格點(diǎn)D,使四邊形ACBD的面積為10,并畫(huà)出這個(gè)四邊形.

2)借助網(wǎng)格、只用直尺(無(wú)刻度)在AB上找一點(diǎn)E,使△AEC為等腰三角形,且AEAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為開(kāi)拓學(xué)生視野,開(kāi)展課外讀書(shū)周活動(dòng),活動(dòng)后期隨機(jī)調(diào)查了九年級(jí)部分學(xué)生一周的課外閱讀時(shí)間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖(如圖)的信息回答下列問(wèn)題:

1)本次調(diào)查的學(xué)生總數(shù)為   人,被調(diào)查學(xué)生的課外閱讀時(shí)間的中位數(shù)是   小時(shí),眾數(shù)是   小時(shí);

2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖,在扇形統(tǒng)計(jì)圖中,課外閱讀時(shí)間為5小時(shí)的扇形的圓心角度數(shù)是   ;

3)若全校九年級(jí)共有學(xué)生700人,估計(jì)九年級(jí)一周課外閱讀時(shí)間為6小時(shí)的學(xué)生有多少人?

4)若學(xué)校需要,從二男二女四名同學(xué)中隨機(jī)選取兩人分享讀后感,恰好是一男一女的概率?(列表或樹(shù)狀圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】掃黑除惡受到廣大人民的關(guān)注,某中學(xué)對(duì)部分學(xué)生就掃黑除惡知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:

1)接受問(wèn)卷調(diào)查的學(xué)生共有_______人,扇形統(tǒng)計(jì)圖中很了解部分所對(duì)應(yīng)扇形的圓心角為_______;

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該中學(xué)共有學(xué)生900人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)掃黑除惡知識(shí)達(dá)到很了解基本了解程度的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y1ax22amx+am2+4,直線y2kxkm+4,其中a≠0,a、km是常數(shù).

(1)拋物線的頂點(diǎn)坐標(biāo)是______,并說(shuō)明上述拋物線與直線是否經(jīng)過(guò)同一點(diǎn)(說(shuō)明理由)

(2)a0,m=2t≤x ≤t+2,y1的最大值為4,求t的范圍;

(3)拋物線的頂點(diǎn)為P,直線與拋物線的另一個(gè)交點(diǎn)為Q,對(duì)任意的m值,若1≤k≤4,線段PQ(不包括端點(diǎn))上至少存在兩個(gè)橫坐標(biāo)為整數(shù)的點(diǎn),求a的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)a是常數(shù)),有下列說(shuō)法:

①函數(shù)圖象與坐標(biāo)軸總有三個(gè)不同的交點(diǎn);

②當(dāng)x1時(shí),不是yx的增大而增大就是yx的增大而減;

③若函數(shù)有最大值,則最大值必為正數(shù),若函數(shù)有最小值,則最小值必為負(fù)數(shù).

其中錯(cuò)誤的說(shuō)法是(

A.B.①②C.②③D.①③

查看答案和解析>>

同步練習(xí)冊(cè)答案