【題目】如圖,直線AB與x軸交于點A(1,0),與y軸交于點B(0,﹣2).
(1)求直線AB的解析式;
(2)若直線AB上的點C在第一象限,且S△BOC=2,求點C的坐標(biāo).
【答案】(1)直線AB的解析式為y=2x﹣2;(2)點C的坐標(biāo)是(2,2).
【解析】試題分析:(1)設(shè)直線的解析式為 將點點分別代入解析式即可組成方程組,從而得到的解析式;
(2)設(shè)點的坐標(biāo)為 根據(jù)三角形面積公式以及求出的橫坐標(biāo),再代入直線即可求出的值,從而得到其坐標(biāo).
試題解析:(1)設(shè)直線AB的解析式為y=kx+b(k≠0).
∵直線AB過點A(1,0)、點B(0,2),
解得
∴直線AB的解析式為y=2x2.
(2)設(shè)點C的坐標(biāo)為(x,y),
∵
解得x=2,
∵直線AB的解析式為y=2x2,
∴當(dāng)x=2時,y=2×22=2,
∴點C的坐標(biāo)是(2,2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下列各組數(shù)據(jù)為邊長,可以構(gòu)成等腰三角形的是( )
A.1cm、2cm、3cmB.3cm、 3cm、 4cm
C.1cm、3cm、1cmD.2cm、 2cm、 4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC⊥BC,BD⊥AD,AC 與BD 交于O,AC=BD.
求證:(1)BC=AD;
(2)△OAB是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形OABC中,BC∥AO,∠AOC=90°,點A,B的坐標(biāo)分別為(5,0), (2,6),點D為AB上一點,且BD=2AD,雙曲線y=(k>0)經(jīng)過點D,交BC于點E.
(1)求雙曲線的解析式;
(2)求四邊形ODBE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點D為等腰直角△ABC內(nèi)一點,∠CAD=∠CBD=15°,E為AD延長線上的一點,且CE=CA.
(1)求證:DE平分∠BDC;
(2)若點M在DE上,且DC=DM,求證:ME=BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:AD與⊙O相切于點D,AF經(jīng)過圓心與圓交于點E、F,連接DE、DF,且EF=6,AD=4.
(1)證明:AD2=AEAF;
(2)延長AD到點B,使DB=AD,直徑EF上有一動點C,連接CB交DF于點G,連接EG,設(shè)∠ACB=α,BG=x,EG=y.
①當(dāng)α=900時,探索EG與BD的大小關(guān)系?并說明理由;
②當(dāng)α=1200時,求y與x的關(guān)系式,并用x的代數(shù)式表示y.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com