18.將正△ABC的各邊四等分,如圖,則圖中全等的三角形共有( 。⿲(duì).
A.100B.121C.144D.169

分析 記正三角形的邊長(zhǎng)為4,分別確定邊長(zhǎng)為1、2、3的三角形個(gè)數(shù),再根據(jù)兩兩之間互相全等可得答案.

解答 解:記正三角形的邊長(zhǎng)為4,
由圖可知:(1)邊長(zhǎng)為1 的正三角形有 16 個(gè),它們都是全等的,其對(duì)數(shù)有15+14+13+…+2+1=120對(duì);
(2)邊長(zhǎng)為2的正三角形有7個(gè),它們都是全等的,其對(duì)數(shù)有6+5+4+3+2+1=21對(duì);
(3)邊長(zhǎng)為3的正三角形有3個(gè),其對(duì)數(shù)有2+1=3 對(duì),
綜上,共有120+21+3=144對(duì)全等三角形,
故選:C.

點(diǎn)評(píng) 本題主要考查等邊三角形的性質(zhì)與全等三角形的判定與性質(zhì),根據(jù)題意確定邊長(zhǎng)為1、2、3的等邊三角形個(gè)數(shù)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.解方程、求值.
(1)解方程:x2-4x-5=0
(2)求值:$\sqrt{2}$sin30°+tan60°-cos45°+tan30°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在平面直角坐標(biāo)系xOy中,過(guò)坐標(biāo)原點(diǎn)O的直線l與雙曲線y=$\frac{3}{x}$相交于點(diǎn)A(m,3).
(1)求直線l的表達(dá)式;
(2)過(guò)動(dòng)點(diǎn)P(n,0)且垂于x軸的直線與l及雙曲線的交點(diǎn)分別為B,C,當(dāng)點(diǎn)B位于點(diǎn)C上方時(shí),寫(xiě)出n的取值范圍-1<n<0或n>1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,已知一次函數(shù)y=-$\frac{1}{2}$x+4與兩坐標(biāo)軸分別交于A、B兩點(diǎn),動(dòng)點(diǎn)P從原點(diǎn)0出發(fā),以每秒2個(gè)單位的速度沿x軸正方向運(yùn)動(dòng),連接AP,設(shè)運(yùn)動(dòng)時(shí)間為ts.
(1)當(dāng)t為何值時(shí),△PAB的面積為6?
(2)若t<4,作△PAB中AP邊上的高BQ,問(wèn):當(dāng)t為何值時(shí),BQ長(zhǎng)為4?并直接寫(xiě)出此時(shí)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

13.寧波地區(qū)最近霧霾天氣頻繁,使得空氣凈化器得以暢銷(xiāo),某商場(chǎng)代理銷(xiāo)售某種空氣凈化器,其進(jìn)價(jià)是500元/臺(tái),經(jīng)過(guò)市場(chǎng)銷(xiāo)售后發(fā)現(xiàn),在一個(gè)月內(nèi),當(dāng)售價(jià)是1000元/臺(tái)時(shí),可售出50臺(tái),且售價(jià)每降低20元,就可多售出5臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于600元/臺(tái),代理銷(xiāo)售商每月要完成不低于60臺(tái)的銷(xiāo)售任務(wù).
(1)試確定月銷(xiāo)售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式;并求出自變量x的取值范圍;
(2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場(chǎng)每月銷(xiāo)售這種空氣凈化器所獲得的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,AB=AC,∠BAC=α,點(diǎn)P是△ABC內(nèi)一點(diǎn),且∠PAC+∠PCA=$\frac{α}{2}$,連接PB,試探究PA、PB、PC滿足的等量關(guān)系.
(1)當(dāng)α=60°時(shí),將△ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為150度,進(jìn)而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關(guān)系為PA2+PC2=PB2;
(2)如圖2,當(dāng)α=120°時(shí),參考(1)中的方法,探究PA、PB、PC滿足的等量關(guān)系,并給出證明;
(3)PA、PB、PC滿足的等量關(guān)系為4PA2•sin2$\frac{α}{2}$+PC2=PB2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.甲乙兩名同學(xué)做摸球游戲,他們把標(biāo)號(hào)分別為1,2,3的三個(gè)小球放在一個(gè)不透明的口袋中,小球大小和性狀完全相同的.
(1)從袋中隨機(jī)摸出一小球,求摸到標(biāo)號(hào)是1的小球的概率.
(2)從袋中隨機(jī)摸出一小球后放回,搖勻后再隨機(jī)摸出一小球,若兩次摸出的小球的標(biāo)號(hào)之和為偶數(shù)時(shí),則甲勝;若兩次摸出的小球的標(biāo)號(hào)之和為奇數(shù)時(shí),則乙勝;試分析這個(gè)游戲是否公平?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知:如圖,?ABCD的兩條對(duì)角線相交于點(diǎn)O,E是BO的中點(diǎn).過(guò)點(diǎn)B作AC的平行線BF,交CE的延長(zhǎng)線于點(diǎn)F,連接AF.
(1)求證:△FBE≌△COE;
(2)將?ABCD添加一個(gè)條件,使四邊形AFBO是菱形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

8.分解因式
(1)a4-16
(2)3ax2-3ax-6a.

查看答案和解析>>

同步練習(xí)冊(cè)答案