【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣5x軸交于A(﹣1,0),B(5,0)兩點,與y軸交于點C.

(1)求拋物線的函數(shù)表達式;

(2)如圖2,CE∥x軸與拋物線相交于點E,點H是直線CE下方拋物線上的動點,過點H且與y軸平行的直線與BC,CE分別相交于點F,G,試探究當(dāng)點H運動到何處時,四邊形CHEF的面積最大,求點H的坐標(biāo);

(3)若點K為拋物線的頂點,點M(4,m)是該拋物線上的一點,在x軸,y軸上分別找點P,Q,使四邊形PQKM的周長最小,求出點P,Q的坐標(biāo).

【答案】(1)y=x2﹣4x﹣5(2)(,﹣);(3)P(,0),Q(0,﹣

【解析】整體分析:

(1)用待定系數(shù)法求拋物線的解析式;(2)設(shè)H(tt2-4t-5),用含t的代數(shù)式表示FH的長,求出CE的長,用對角線互相垂直的四邊形的面積等于對角線積的一半,把四邊形CHEF的面積表示為關(guān)于t的二次函數(shù),用二次函數(shù)的性質(zhì)求解;(3)作點M,K關(guān)于x軸,y軸對稱點M′,K′,連接M′K′,分別交x,y軸于點P,Q,求出M′K′的解析式,即可得到點P,Q的坐標(biāo).

:(1)A(-1,0),B(5,0)代入y=ax2+bx-5

,解得

∴二次函數(shù)的表達式為y=x2-4x-5

(2)如圖2,設(shè)H(t,t2-4t-5),

CE||x軸,∴-5=x2-4x-5,解得,x1=0x2=4,

E(4-5),CE=4,

B(50),C(0-5),

∴直線BC的解析式為y2=x-5,∴F(tt-5),

CE||x軸,HF||y軸,∴CEHF,

∴四邊形CHEF的面積=)2+,

H(.

(3)如圖3,

∵點K為頂點,∴K(2-9),

∴點K關(guān)于y軸的對稱點K′的坐標(biāo)為(-2-9).

M(4,m),M(4,-5),

∴點M關(guān)于x軸的對稱點M′的坐標(biāo)為(4,5).

設(shè)直線K′M′的解析式為y3=a3x+b3

,∴

∴直線BC的解析式為y3=

P,Q的坐標(biāo)分別為P(,0),Q(0,-.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿AB方向運動,且速度為每秒1cm,點Q從點B開始沿BCA方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.

(1)出發(fā)2秒后,求PQ的長;

(2)當(dāng)點Q在邊BC上運動時,出發(fā)幾秒鐘,△PQB能形成等腰三角形?

(3)當(dāng)點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在ABC中,∠A=90°,AB=AC=1PAC上不與A、C重合的一動點,PQBCQ,QRABR

1)求證:PQ=CQ;

2)設(shè)CP的長為x,QR的長為y,求yx之間的函數(shù)關(guān)系式及自變量x的取值范圍,并在平面直角坐標(biāo)系作出函數(shù)圖象

3PR能否平行于BC?如果能,試求出x的值;若不能,請簡述理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一條數(shù)軸上從左到右依次取AB,C三個點,且使得點A,B到原點O的距離均為1個單位長度,點C到點A的距離為7個單位長度.

1)在數(shù)軸上點A所表示的數(shù)是__________,點C所表示的數(shù)是_____________.

2)若點PQ分別從點A、C處出發(fā),沿數(shù)軸以每秒1個單位長度和每秒3個單位長度的速度同時向左運動,運動時間為t秒,當(dāng)P、Q兩點相距為4個單位長度時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象l1分別與x軸,y軸交于A150),B兩點,正比例函數(shù)y=x的圖象l2l1交于點Cm,3).

1)求m的值及l1所對應(yīng)的一次函數(shù)表達式;

2)根據(jù)圖象,請直接寫出在第一象限內(nèi),當(dāng)一次函數(shù)y=kx+b的值大于正比例函數(shù)y=x的值時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)觀察思考:如圖,線段AB上有兩個點C、D,請分別寫出以點A、B、C、D為端點的線段,并計算圖中共有多少條線段;

(2)模型構(gòu)建:如果線段上有m個點(包括線段的兩個端點),則該線段上共有多少條線段?請說明你結(jié)論的正確性;

(3)拓展應(yīng)用:某班45名同學(xué)在畢業(yè)后的一次聚會中,若每兩人握1次手問好,那么共握多少次手?

請將這個問題轉(zhuǎn)化為上述模型,并直接應(yīng)用上述模型的結(jié)論解決問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點AB坐標(biāo)分別為(4,0)、(0,8),點C是線段OB上一動點,點Ex軸正半軸上,四邊形OEDC是矩形,且OE=2OC.設(shè)OE=t(t>0),矩形OEDC與△AOB重合部分的面積為S.根據(jù)上述條件,回答下列問題:

(1)當(dāng)矩形OEDC的頂點D在直線AB上時,t=

(2)當(dāng)t=4時,直接寫出S的值;

(3)求出St的函數(shù)關(guān)系式;

(4)若S=12,則t=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(感知)如圖①,ABCD,點E在直線ABCD之間,連結(jié)AEBE,試說明∠BAE+DCE=AEC;

(探究)當(dāng)點E在如圖②的位置時,其他條件不變,試說明∠AEC+BAE+DCE=360°;

(應(yīng)用)點EF、G在直線ABCD之間,連結(jié)AE、EFFGCG,其他條件不變,如圖③,若∠EFG=36°,則∠BAE+AEF+FGC+DCG=______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】共享單車被譽為新四大發(fā)明之一,如圖1所示是某公司2017年向信陽市場提供一種共享自行車的實物圖,車架檔ACCD的長分別為45cm,60cmACCD,座桿CE的長為20cm,點A,CE在同一條直線上,且∠CAB=75°,如圖2

1)求車架檔AD的長;

2)求車座點E到車架檔AB的距離.(結(jié)果精確到1cm,參考數(shù)據(jù):sin75°=0.9659,cos75°=0.2588tan75°=3.7321

查看答案和解析>>

同步練習(xí)冊答案