【題目】為提醒人們節(jié)約用水,及時修好漏水的水龍頭.小明同學做了水龍頭漏水實驗,每隔10秒觀察量筒中水的體積,記錄的數(shù)據(jù)如表(漏出的水量精確到1毫升),已知用于接水的量筒最大容量為100毫升.

時間t(秒)

10

20

30

40

50

60

70

量筒內(nèi)水量v(毫升)

4

6

8

10

12

14

16

1)在圖中的平面直角坐標系中,以(t,v)為坐標描出上表中數(shù)據(jù)對應的點;

2)用光滑的曲線連接各點,你猜測Vt的函數(shù)關系式是______________

3)解決問題:

小明同學所用量筒開始實驗前原有存水 毫升

如果小明同學繼續(xù)實驗,當量筒中的水剛好盛滿時,所需時間是_____;

按此漏水速度,半小時會漏水 毫升.

【答案】1)答案見解析;(2;(3①2;②490,360

【解析】

1)根據(jù)每個點(t,v)的值作點

2)根據(jù)作圖猜測Vt的函數(shù)關系是二元一次方程,代入點求解即可得出具體函數(shù)關系式

3)根據(jù)Vt的函數(shù)關系式,分別得出①②③的解

解:(1

2)設 ,分別代入(10,4)、(20,6)求解得

3

①令t=0,V=2

②令V=100,t=490

③令t=1800V=362,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了了解居民的環(huán)保意識,社區(qū)工作人員在某小區(qū)隨機抽取了若干名居民開展主題為打贏藍天保衛(wèi)戰(zhàn)的環(huán)保知識有獎答卷活動(每名居民必須答卷且只答一份),并用得到的數(shù)據(jù)繪制了如圖所示的條形統(tǒng)計圖(得分為整數(shù),滿分為分,最低分為分)

請根據(jù)圖中信息,解答下列問題:

1)本次調(diào)查,一共抽取了多少名居民?

2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)和眾數(shù);

3)社區(qū)決定對該小區(qū)名居民開展這項有獎答卷活動,得分者獲一等獎,請你根據(jù)調(diào)查結果,幫社區(qū)工作人員估計需要準備多少份一等獎獎品?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為慶祝中華人民共和國七十周年華誕,某校舉行書畫大賽,準備購買甲、乙兩種文具,獎勵在活動中表現(xiàn)優(yōu)秀的師生.已知購買個甲種文具、個乙種文具共需花費元;購買個甲種文具、個乙種文具共需花費元.

1)求購買一個甲種文具、一個乙種文具各需多少元?

2)若學校計劃購買這兩種文具共個,投入資金不少于元又不多于元,設購買甲種文具個,求有多少種購買方案?

3)設學校投入資金元,在(2)的條件下,哪種購買方案需要的資金最少?最少資金是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】材料:數(shù)學興趣一小組的同學對完全平方公式進行研究:因,將左邊展開得到,移項可得:.

數(shù)學興趣二小組受興趣一小組的啟示,繼續(xù)研究發(fā)現(xiàn):對于任意兩個非負數(shù)、,都存在,并進一步發(fā)現(xiàn),兩個非負數(shù)、的和一定存在著一個最小值.

根據(jù)材料,解答下列問題:

1__________,);___________);

2)求的最小值;

3)已知,當為何值時,代數(shù)式有最小值,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點AC分別在x、y軸的正半軸上,頂點B的坐標為(4,2)點M是邊BC上的一個動點(不與BC重合),反比例函數(shù)k0x0)的圖象經(jīng)過點M且與邊AB交于點N,連接MN

(1)當點M是邊BC的中點時,求反比例函數(shù)的表達式;

(2)在點M的運動過程中,試證明:是一個定值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一張平行四邊形紙片ABCD沿著線段EF折疊(點E、F分別在AB邊和BC邊上),使得點C落在點A處,點D落在點G出。

(1)如果連接EC,那么線段GEEC在同一條直線上嗎?為什么?

(2)試判斷四邊形AFCE的形狀,并說明你是怎樣判斷的?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店銷售一批襯衫,每件進價元,開始以每件元的價格銷售,每星期能賣出件,后來因庫存積壓,決定降價銷售,經(jīng)兩次降價后的每件售價元,每星期能賣出件.

已知兩次降價百分率相同,求每次降價的百分率;

聰明的店主在降價過程中發(fā)現(xiàn),適當?shù)慕祪r既可增加銷售又可增加收入,且每件襯衫售價每降低元,銷售會增加件,若店主想要每星期獲利元,應把售價定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線C1:y1=mx2﹣4mx+2n﹣1與平行于x軸的直線交于A、B兩點,且A點坐標為(﹣1,2),請結合圖象分析以下結論:①對稱軸為直線x=2;②拋物線與y軸交點坐標為(0,﹣1);m>④若拋物線C2:y2=ax2(a≠0)與線段AB恰有一個公共點,則a的取值范圍是≤a<2;⑤不等式mx2﹣4mx+2n>0的解作為函數(shù)C1的自變量的取值時,對應的函數(shù)值均為正數(shù),其中正確結論的個數(shù)有(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知的直徑,、分別與圓相交于,那么下列等式中一定成立的是(

A. AEBF=AFCF B. AEAB=AOAD'

C. AEAB=AFAC D. AEAF=AOAD

查看答案和解析>>

同步練習冊答案