【題目】如圖,拋物線y ax bx c a, b, c 是常數(shù),a 0 )與 x 軸交于A ,B 兩點,頂點P(m,n),給出下列結(jié)論:①2a+c<0;②若,,在拋物線上,則y1>y2>y3;③關(guān)于x的方程有實數(shù)解,則;④當時,ABP為等腰直角三角形,正確的結(jié)論有( )個.

A.1B.2C.3D.4

【答案】B

【解析】

根據(jù)二次函數(shù)的圖像與性質(zhì)一一判斷即可.

解:∵,a0,

ab,

x1時,y0

abc0,

2acabc0,故①錯誤;

,,在拋物線上,由圖象法可知,y1y2y3;故②正確,

∵拋物線與直線yt有交點時,方程ax2bxct有解,tn,

ax2bxct0有實數(shù)解

要使得ax2bxk0有實數(shù)解,則kctcn;故③錯誤,

設(shè)拋物線的對稱軸交x軸于H

,

b24ac4,

x,

|x1x2|

AB2PH,

BHAH,

PHBHAH,

∴△PAB是直角三角形,

PAPB

∴△PAB是等腰直角三角形.故④正確.

綜上,結(jié)論正確的是②④,

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某市從不同學校隨機抽取100名初中生對使用數(shù)學教輔用書的冊數(shù)進行調(diào)查,統(tǒng)計結(jié)果如下:

冊數(shù)

0

1

2

3

人數(shù)

10

20

30

40

關(guān)于這組數(shù)據(jù),下列說法正確的是( 。

A.眾數(shù)是2B.中位數(shù)是2

C.平均數(shù)是3D.方差是1.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某店代理某品牌商品的銷售.已知該品牌商品進價每件40元,日銷售y(件)與銷售價x(元/件)之間的關(guān)系如圖所示(實線),付員工的工資每人每天100元,每天還應支付其它費用150元.

1)求日銷售y(件)與銷售價x(元/件)之間的函數(shù)關(guān)系式;

2)該店員工人共3人,若某天收支恰好平衡(收入=支出),求當天的銷售價是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 RtABC 中,∠C90°,以 BC 為直徑的O AB 于點 D,過點 D 作∠ADE=∠A,交 AC 于點 E

1)求證:DE O 的切線;

2)若BC=15cm,求 DE 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題

(1)本次調(diào)查的學生有多少人?

(2)補全上面的條形統(tǒng)計圖;

(3)扇形統(tǒng)計圖中C對應的中心角度數(shù)是_____

(4)若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線 y x2 bx c 的圖象與 x 軸交于 A1, 0 、 B 4, 0 兩點, 與 y 軸交于點C ,拋物線的對稱軸與 x 軸交于點 D ,點 M O 點出發(fā),以每秒 1 個單位長度的速度向 B 點運動(運動到 B 點停止),過點 M x 軸的垂線,交拋物線于點 P ,交 BC 與點Q .

1)求拋物線的解析式;

2)設(shè)當點 M 運動了t (秒)時,四邊形OBPC 的面積為 S ,求 S t 的函數(shù)關(guān)系式,并指出自變量t 的取值范圍;

3)在線段 BC 上是否存在點Q ,使得DBQ 成為等腰三角形?若存在,求出點Q 的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+cba0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:①該拋物線的對稱軸在y軸左側(cè);②關(guān)于x的方程ax2+bx+c=0無實數(shù)根;③a-b+c≥0;④的最小值為3,其中正確結(jié)論的個數(shù)是( 。

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x1,x2是關(guān)于x的一元二次方程4kx2﹣4kx+k+1=0的兩個實數(shù)根.

(1)是否存在實數(shù)k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,說明理由;

(2)求使﹣2的值為整數(shù)的實數(shù)k的整數(shù)值;

(3)若k=﹣2,λ=,試求λ的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某海盜船以20海里/小時的速度在某海域執(zhí)行巡航任務,當海監(jiān)船由西向東航行至A處使,測得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時到達B處,測得島嶼P在其北偏西30°方向,保持航向不變又航行2小時到達C處,求出此時海監(jiān)船與島嶼P之間的距離(即PC的長,結(jié)果精確到0.1)(參考數(shù)據(jù):≈1.732≈1.414

查看答案和解析>>

同步練習冊答案