【題目】如圖,已知拋物線 y x2 bx c 的圖象與 x 軸交于 A1, 0 、 B 4, 0 兩點(diǎn), 與 y 軸交于點(diǎn)C ,拋物線的對(duì)稱軸與 x 軸交于點(diǎn) D ,點(diǎn) M 從O 點(diǎn)出發(fā),以每秒 1 個(gè)單位長(zhǎng)度的速度向 B 點(diǎn)運(yùn)動(dòng)(運(yùn)動(dòng)到 B 點(diǎn)停止),過點(diǎn) M 作 x 軸的垂線,交拋物線于點(diǎn) P ,交 BC 與點(diǎn)Q .
(1)求拋物線的解析式;
(2)設(shè)當(dāng)點(diǎn) M 運(yùn)動(dòng)了t (秒)時(shí),四邊形OBPC 的面積為 S ,求 S 與t 的函數(shù)關(guān)系式,并指出自變量t 的取值范圍;
(3)在線段 BC 上是否存在點(diǎn)Q ,使得DBQ 成為等腰三角形?若存在,求出點(diǎn)Q 的坐標(biāo);若不存在,說明理由.
【答案】(1)拋物線的解析式為y x2 3x 4.(2)S=2x2+8x+8(0≤x≤4)
(3)存在,Q的坐標(biāo)為(,), 或(4,), 或(,).
【解析】
(1)把A1, 0 、 B 4, 0 兩點(diǎn)代入解析式即可求解;
(2)設(shè)點(diǎn)P的坐標(biāo)為P(x,y),由S四邊形OBPC=S△OPC+S△OPB可列出S與x的函數(shù)關(guān)系式,由于B(4,0),所以0≤x≤4;
(3)有三種可能:①BQ=DQ,②BQ=BD=,③DQ=BD=,分別討論即可求得.
解:(1)把A1, 0 、 B 4, 0 兩點(diǎn)代入解析式得
,解得
∴拋物線的解析式為y x2 3x 4.
∴C點(diǎn)坐標(biāo)為(0,4)
設(shè)BC的解析式為y=kx+b,利用B 4, 0,C(0,4)得到BC的解析式為y=-x+4.
(2)如圖,連接OP,設(shè)點(diǎn)P的坐標(biāo)為P(x,y)
S四邊形OBPC=S△OPC+S△OPB=×4×x+×4×y
=2x+2y
=2x+2(x2+3x+4)
=2x2+8x+8.
∵點(diǎn)M運(yùn)動(dòng)到B點(diǎn)上停止,
∴0≤x≤4
∴S=2x2+8x+8(0≤x≤4)
(3)存在.
∵y=x2+3x+4=(x)2+
∴頂點(diǎn)的坐標(biāo)為(,),
∵OB=OC=4,
∴BC=,∠ABC=45°,
故①若BQ=DQ
∵BQ=DQ,BD=4=
∴BM=QM=,
∴OM=4=
所以Q的坐標(biāo)為Q(,)
②若BQ=BD=
∵∠QBM=∠CBO,∠BMQ=∠BOC=90°
∴△BQM∽△BCO,
∴,
∴
∴QM=BM=
∴OM=4
所以Q的坐標(biāo)為Q(4,).
③若DQ=BD=
∵∠ABC=45°,
∴DQ⊥BD,
∴△DBQ是等腰直角三角形,
∴DQ=BD=
所以Q的坐標(biāo)為Q(,),
綜上所述,Q的坐標(biāo)為Q(,), 或(4,), 或(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤被它的兩條直徑分成了四個(gè)分別標(biāo)有數(shù)字的扇形區(qū)域,其中標(biāo)有數(shù)字“1”的扇形圓心角為120°.轉(zhuǎn)動(dòng)轉(zhuǎn)盤,待轉(zhuǎn)盤自動(dòng)停止后,指針指向一個(gè)扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉(zhuǎn)出的數(shù)字,此時(shí),稱為轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次(若指針指向兩個(gè)扇形的交線,則不計(jì)轉(zhuǎn)動(dòng)的次數(shù),重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤,直到指針指向一個(gè)扇形的內(nèi)部為止)
(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,求轉(zhuǎn)出的數(shù)字是-2的概率;
(2)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,用樹狀圖或列表法求這兩次分別轉(zhuǎn)出的數(shù)字之積為正數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,動(dòng)點(diǎn)P、Q分別以3cm/s、2cm/s的速度從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)Q從點(diǎn)C向點(diǎn)D移動(dòng).
(1)若點(diǎn)P從點(diǎn)A移動(dòng)到點(diǎn)B停止,點(diǎn)Q隨點(diǎn)P的停止而停止移動(dòng),點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),問經(jīng)過多長(zhǎng)時(shí)間P、Q兩點(diǎn)之間的距離是10cm?
(2)若點(diǎn)P沿著AB→BC→CD移動(dòng),點(diǎn)P、Q分別從點(diǎn)A、C同時(shí)出發(fā),點(diǎn)Q從點(diǎn)C移動(dòng)到點(diǎn)D停止時(shí),點(diǎn)P隨點(diǎn)Q的停止而停止移動(dòng),試探求經(jīng)過多長(zhǎng)時(shí)間△PBQ的面積為12cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)安裝有進(jìn)出水管的30升容器,水管單位時(shí)間內(nèi)進(jìn)出的水量是一定的,設(shè)從某時(shí)刻開始的4分鐘內(nèi)只進(jìn)水不出水,在隨后的8分鐘內(nèi)既進(jìn)水又出水,得到水量y(升)與時(shí)間x(分)之間的函數(shù)關(guān)系如圖所示.根據(jù)圖象信思給出下列說法,其中錯(cuò)誤的是( 。
A. 每分鐘進(jìn)水5升
B. 每分鐘放水1.25升
C. 若12分鐘后只放水,不進(jìn)水,還要8分鐘可以把水放完
D. 若從一開始進(jìn)出水管同時(shí)打開需要24分鐘可以將容器灌滿
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y ax bx c ( a, b, c 是常數(shù),a 0 )與 x 軸交于A ,B 兩點(diǎn),頂點(diǎn)P(m,n),給出下列結(jié)論:①2a+c<0;②若,,在拋物線上,則y1>y2>y3;③關(guān)于x的方程有實(shí)數(shù)解,則;④當(dāng)時(shí),△ABP為等腰直角三角形,正確的結(jié)論有( )個(gè).
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線與坐標(biāo)軸交于A,B,C三點(diǎn),其中C(0,3),∠BAC的平分線AE交y軸于點(diǎn)D,交BC于點(diǎn)E,過點(diǎn)D的直線l與射線AC,AB分別交于點(diǎn)M,N.
(1)直接寫出a的值、點(diǎn)A的坐標(biāo)及拋物線的對(duì)稱軸;
(2)點(diǎn)P為拋物線的對(duì)稱軸上一動(dòng)點(diǎn),若△PAD為等腰三角形,求出點(diǎn)P的坐標(biāo);
(3)證明:當(dāng)直線l繞點(diǎn)D旋轉(zhuǎn)時(shí),均為定值,并求出該定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若存在實(shí)數(shù)對(duì)坐標(biāo)(x,y)同時(shí)滿足一次函數(shù)y=px+q和反比例函數(shù)y=,則二次函數(shù)y=px2+qxk為一次函數(shù)和反比例函數(shù)的“聯(lián)姻”函數(shù).
(1)試判斷(需要寫出判斷過程):一次函數(shù)y=x+3和反比例函數(shù)y=是否存在“聯(lián)姻”函數(shù),若存在,寫出它們的“聯(lián)姻”函數(shù)和實(shí)數(shù)對(duì)坐標(biāo).
(2)已知:整數(shù)m,n,t滿足條件t<n<8m,并且一次函數(shù)y=(1+n)x+2m+2與反比例函數(shù)y=存在“聯(lián)姻”函數(shù)y=(m+t)x2+(10mt)x2015,求m的值.
(3)若同時(shí)存在兩組實(shí)數(shù)對(duì)坐標(biāo)[x1,y1]和[x2,y2]使一次函數(shù)y=ax+2b和反比例函數(shù)y=為“聯(lián)姻”函數(shù),其中,實(shí)數(shù)a>b>c,a+b+c=0,設(shè),求L的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為的正方形ABCD中,G是AD延長(zhǎng)線上的一點(diǎn),且D為AG中點(diǎn),動(dòng)點(diǎn)M從A點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿看A→C→G的路線向G點(diǎn)勻速運(yùn)動(dòng)(M不與A,G重合),設(shè)運(yùn)動(dòng)時(shí)間t秒,連接BM并延長(zhǎng)交AG于N點(diǎn).
(1)當(dāng)t為何值時(shí),△ABM為等腰三角形?
(2)當(dāng)點(diǎn)N在AD邊上時(shí),若DN⊥HN,NH交∠CDG的平分線于H,求證:BN=HN;
(3)過點(diǎn)M分別作AB,AD的垂線,垂足分別為E,F,矩形AEMF與△ACG重疊部分的面積為S,請(qǐng)直接寫出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(﹣2,0),B(4,0),拋物線y=ax2+bx﹣1過A、B兩點(diǎn),并與過A點(diǎn)的直線y=﹣x﹣1交于點(diǎn)C.
(1)求拋物線解析式及對(duì)稱軸;
(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使四邊形ACPO的周長(zhǎng)最。咳舸嬖,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)點(diǎn)M為y軸右側(cè)拋物線上一點(diǎn),過點(diǎn)M作直線AC的垂線,垂足為N.問:是否存在這樣的點(diǎn)N,使以點(diǎn)M、N、C為頂點(diǎn)的三角形與△AOC相似,若存在,求出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com