如圖,對稱軸為直線x=一的拋物線經(jīng)過點A(-6,0)和點B(0,4).

(1)求拋物線的解析式和頂點坐標(biāo);

(2)設(shè)點E(x,y)是拋物線上的一個動點,且位于第三象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求OEAF的面積S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

    ①當(dāng)OEAF的面積為24時,請判斷OEAF是否為菱形?

②是否存在點E,使OEAF為正方形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.

 

【答案】

(1) y=(x+) 2-,頂點坐標(biāo)為(-,-)(2) ①是菱形②不存在,理由見解析

【解析】解:(1)設(shè)拋物線的解析式為y=a(x+)2+k(k≠0),           

則依題意得:

 解之得:

即:y=(x+) 2-,頂點坐標(biāo)為(-,-)

(2) ∵點E(x,y)在拋物線上,且位于第三象限.

∴S=2S△OAE=2××0A×(-y)

   =-6y   

   =-4(x+)2+25(-6<x<-1)

①  當(dāng)S=24時,即-4(x+)2+25=24,

解之得:x1=-3,x2=-4

∴點E為(-3,-4)或(-4,-4)

當(dāng)點E為(-3,-4)時,滿足OE=AE,故OEAF是菱形;當(dāng)點E為(-4,-4)時,不滿足OE=AE,故OEAF不是菱形.                                       

②當(dāng)0E⊥AE且OE=AE時,OEAF是正方形,此時點E的坐標(biāo)為(-3,-3),而點E不在拋物線上,故不存在點E,使OEAF為正方形。                

(1)根據(jù)對稱軸設(shè)拋物線的解析式為y=a(x+7/2 )2+k,將A、B兩點坐標(biāo)代入,列方程組求a、k的值;

(2)根據(jù)平行四邊形的性質(zhì)可知S=2S△OAE,△OAE的底為AO,高為E點縱坐標(biāo)的絕對值,由此列出函數(shù)關(guān)系式,①當(dāng)S=24時,由函數(shù)關(guān)系式得出方程,求x的值,再逐一判斷;②不存在,只有當(dāng)0E⊥AE且OE=AE時,□OEAF是正方形,由此求出E點坐標(biāo),判斷E點坐標(biāo)是否在拋物線上.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莒南縣二模)如圖,對稱軸為直線x=-
72
的拋物線經(jīng)過點A(-6,0)和點B(0,4).
(1)求拋物線的解析式和頂點坐標(biāo);
(2)設(shè)點E(x,y)是拋物線上的一個動點,且位于第三象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求?OEAF的面積S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當(dāng)?OEAF的面積為24時,請判斷?OEAF是否為菱形?
②是否存在點E,使?OEAF為正方形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.•

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,對稱軸為直線x=-2的拋物線經(jīng)過A(-3,0)和B(0,-3).
(1)求拋物線解析式;
(2)設(shè)點D(m,n)是拋物線上一動點,且位于第二象限,四邊形ODAE是以O(shè)A為對角線的平行四邊形.
①當(dāng)四邊形ODAE的面積為
94
時,請判斷四邊形ODAE是否為菱形?并說明理由;
②當(dāng)點E也剛好落在拋物線上時.求m的值;
(3)設(shè)拋物線與x軸另一交點為C,拋物線上是否存在點P,使得△PBC為直角三角形?若存在,直接寫出點P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,對稱軸為直線x=
72
的拋物線經(jīng)過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點D的坐標(biāo);
(2)設(shè)點E(x,y)是拋物線上位于第四象限內(nèi)一動點,將△OAE繞OA的中點旋轉(zhuǎn)180°,點E落到點F的位置.求四邊形OEAF的面積S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
①當(dāng)四邊形OEAF的面積為24時,請判斷四邊形OEAF的形狀.
②是否存在點E,使四邊形OEAF為正方形?若存在,求出點E的坐標(biāo);若不存在,請說明理由.
(3)若點P是x軸上一點,以P、A、D為頂點作平行四邊形,該平行四邊形的另一頂點在y軸上,請直接寫出滿足條件的所有點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,對稱軸為直線x=
72
的拋物線經(jīng)過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點坐標(biāo);
(2)設(shè)點E(x,y)是拋物線第四象限上一動點,四邊形OEAF是以O(shè)A為對角線的平行四邊形,求?OEAF的面積S與x之間的函數(shù)關(guān)系式,并求出自變量的取值范圍;
(3)若S=24,試判斷?OEAF是否為菱形;
(4)若點E在(1)中的拋物線上,點F在對稱軸上,以O(shè)、E、A、F為頂點的四邊形能否為平行四邊形?若能,求出點E、F的坐標(biāo);若不能,請說明理由.(第(4)問不寫解答過程,只寫結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖,對稱軸為直線x=4的拋物線y=ax2+2x與x軸相交于點B、O.
(1)求拋物線的解析式.
(2)連接AB,平移AB所在的直線,使其經(jīng)過原點O,得到直線l.點P是l上一動點,當(dāng)△PAB的周長最小時,求點P的坐標(biāo).
(3)當(dāng)△PAB的周長最小時,在直線AB的上方是否存在一點Q,使以A,B,Q為頂點的三角形與△POB相似?若存在,直接寫出點Q的坐標(biāo);若不存在,說明理由.(規(guī)定:點Q的對應(yīng)頂點不為點O)

查看答案和解析>>

同步練習(xí)冊答案