17、如圖,在邊長為2的正方形ABCD中,E為AB的中點,BM⊥CE,則Rt△BEM與Rt△BCM斜邊上的高的比為
1:2
分析:根據(jù)已知得到Rt△BEM與∽Rt△CBM,由已知得BE,BC的長,從而根據(jù)對應(yīng)邊上的高的比等于相似比得到答案.
解答:解:∵∠CMB=∠BME=90°,∠BME=∠CEB
∴Rt△BEM與∽Rt△CBM
∵BE=1,BC=2
∴Rt△BEM與Rt△BCM斜邊上的高的比為1:2.
點評:主要考查了正方形的性質(zhì)和相似三角形的判定.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,如果邊長為1的正六邊形ABCDEF繞著頂點A順時針旋轉(zhuǎn)60°后與正六邊形AGHMNP重合,那么點B的對應(yīng)點是點
 
,點E在整個旋轉(zhuǎn)過程中,所經(jīng)過的路徑長為
 
 (結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在邊長為a的正△ABC中,分別以A,B,C點為圓心,
1
2
a
長為半徑作
DE
,
EF
FD
,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將邊長為3的正六邊形A1A2A3A4A5A6,在直線l上由圖1的位置按順時針方向向右作無滑動滾動,當A1第一次滾動到圖2位置時,頂點A1所經(jīng)過的路徑的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在邊長為a的正△ABC中,分別以A,B,C點為圓心,數(shù)學公式長為半徑作數(shù)學公式,數(shù)學公式數(shù)學公式,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:初三數(shù)學圓及旋轉(zhuǎn)題庫 第8講:弧長和扇形面積(解析版) 題型:解答題

已知:如圖,在邊長為a的正△ABC中,分別以A,B,C點為圓心,長為半徑作,,,求陰影部分的面積.

查看答案和解析>>

同步練習冊答案