【題目】因式分解:

1yx;

2)(x2)(x4)+-4

3)(x4y)16xy

4)(p4)(p1)6

【答案】1xyxy)(xy)(22x2)(x1)(3 (x2y)(x-2y)4 (p2)(p-1)

【解析】

1)首先提公因式xy,再利用平方差進(jìn)行二次分解即可;

2)首先把后兩項利用平方差進(jìn)行分解,再提公因式x2,然后化簡即可;

3)先根據(jù)平方差公式進(jìn)行因式分解,再根據(jù)完全平方公式即可求解;

4)先根據(jù)整式的乘法進(jìn)行運算,再根十字相乘法因式分解.

1yx

xyx2y2),

xyxy)(xy

2(x2)(x4)+-4

=(x2)(x4)+(x2)(x2),

=(x2)(x4x2),

=(x2)(2x2),

2x2)(x1

3(x4y)16xy

=(x4y+4xy) (x4y-4xy)

=(x2y)(x-2y)

4(p4)(p1)6

=p2+p-4p-4+6

= p2-3p+2

=(p2)(p-1)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BAD=90°,點EBC的延長線上,且∠DEC=BAC.

(1)求證:DE是⊙O的切線;

(2)若ACDE,當(dāng)AB=8,CE=2時,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC和△ADE中,AB=ACAD=AE,∠BAC=DAE=30°CD、BE交于點O,連接OA

(1) 如圖1,求證:△ABE≌△ACD

(2) 如圖1,求∠AOE的大小

(3) 當(dāng)繞點A旋轉(zhuǎn)至如圖2所示位置時,若∠BAC=DAE=α,∠AOE=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】機動車行駛到斑馬線要禮讓行人等交通法規(guī)實施后,某校數(shù)學(xué)課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

請結(jié)合圖中所給信息解答下列問題:

(1)本次共調(diào)查  名學(xué)生;扇形統(tǒng)計圖中C所對應(yīng)扇形的圓心角度數(shù)是  ;

(2)補全條形統(tǒng)計圖;

(3)該校共有800名學(xué)生,根據(jù)以上信息,請你估計全校學(xué)生中對這些交通法規(guī)非常了解的有多少名?

(4)通過此次調(diào)查,數(shù)學(xué)課外實踐小組的學(xué)生對交通法規(guī)有了更多的認(rèn)識,學(xué)校準(zhǔn)備從組內(nèi)的甲、乙、丙、丁四位學(xué)生中隨機抽取兩名學(xué)生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求甲和乙兩名學(xué)生同時被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC, BAC=90°,D是斜邊BC的中點,E,F分別是AB,AC邊上的點,且DEDF.

1)判斷DEDF的數(shù)量關(guān)系,并說明理由;

2)若BE=12,CF=5,求DEF的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形紙片ABC中,∠A=65°,∠B=75°,將∠C沿DE對折,使點C落在ΔABC外的點處,若∠1=20°,則∠2的度數(shù)為( )

A. 80°B. 90°

C. 100°D. 110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)依次為A﹣1,2),B﹣4,1),C﹣2,﹣2

1)請寫出△ABC關(guān)于x軸對稱的點A1、B1、C1的坐標(biāo);

2)請在這個坐標(biāo)系中作出△ABC關(guān)于y軸對稱的△A2B2C2;

3)計算:△A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一艘海輪位于燈塔C的北偏東45方向,距離燈塔100海里的A處,它沿正南方向航行一段時間后,到達(dá)位于燈塔C的南偏東30°方向上的B處,求此時船距燈塔的距離(參考數(shù)據(jù):≈1.414,1.732,結(jié)果取整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A、B的坐標(biāo)分別是A(6,0)、B(0,2),在AB的右上方有一點C,使△ABC是以AB為斜邊的直角三角形.

(1)若點C坐標(biāo)為(x,y),請在圖1中作一點C(點A除外),使x+y=6;

(2)設(shè)點C坐標(biāo)為(x,y),請在圖2中作一點C,使x+y的值最大,并求出x+y的最大值.

請利用沒有刻度的直尺和圓規(guī)作出符合條件的點C.(注:不寫作法,保留作圖痕跡,對圖中涉及到的點用字母進(jìn)行標(biāo)注

查看答案和解析>>

同步練習(xí)冊答案