【題目】機(jī)動車行駛到斑馬線要禮讓行人等交通法規(guī)實施后,某校數(shù)學(xué)課外實踐小組就對這些交通法規(guī)的了解情況在全校隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為四種:A.非常了解,B.比較了解,C.基本了解,D.不太了解,實踐小組把此次調(diào)查結(jié)果整理并繪制成下面不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

請結(jié)合圖中所給信息解答下列問題:

(1)本次共調(diào)查  名學(xué)生;扇形統(tǒng)計圖中C所對應(yīng)扇形的圓心角度數(shù)是  ;

(2)補(bǔ)全條形統(tǒng)計圖;

(3)該校共有800名學(xué)生,根據(jù)以上信息,請你估計全校學(xué)生中對這些交通法規(guī)非常了解的有多少名?

(4)通過此次調(diào)查,數(shù)學(xué)課外實踐小組的學(xué)生對交通法規(guī)有了更多的認(rèn)識,學(xué)校準(zhǔn)備從組內(nèi)的甲、乙、丙、丁四位學(xué)生中隨機(jī)抽取兩名學(xué)生參加市區(qū)交通法規(guī)競賽,請用列表或畫樹狀圖的方法求甲和乙兩名學(xué)生同時被選中的概率.

【答案】(1)60、90°;(2)補(bǔ)全條形圖見解析;(3)估計全校學(xué)生中對這些交通法規(guī)非常了解的有320名;(4)甲和乙兩名學(xué)生同時被選中的概率為

【解析】

1)用A的人數(shù)以及所占的百分比就可以求出調(diào)查的總?cè)藬?shù),用C的人數(shù)除以調(diào)查的總?cè)藬?shù)后再乘以360度即可得;

(2)根據(jù)D的百分比求出D的人數(shù),繼而求出B的人數(shù),即可補(bǔ)全條形統(tǒng)計圖;

(3)用非常了解所占的比例乘以800即可求得;

(4)畫樹狀圖得到所有可能的情況,然后找出符合條件的情況用,利用概率公式進(jìn)行求解即可得.

(1)本次調(diào)查的學(xué)生總?cè)藬?shù)為24÷40%=60人,

扇形統(tǒng)計圖中C所對應(yīng)扇形的圓心角度數(shù)是360°×=90°,

故答案為:60、90°;

(2)D類型人數(shù)為60×5%=3,則B類型人數(shù)為60﹣(24+15+3)=18,

補(bǔ)全條形圖如下:

(3)估計全校學(xué)生中對這些交通法規(guī)非常了解的有800×40%=320名;

(4)畫樹狀圖為:

共有12種等可能的結(jié)果數(shù),其中甲和乙兩名學(xué)生同時被選中的結(jié)果數(shù)為2,所以甲和乙兩名學(xué)生同時被選中的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公元3世紀(jì),古希臘數(shù)學(xué)家丟番圖(Diophantus)在其《算術(shù)》一書中設(shè)置了以下問題:已知兩正整數(shù)之和為20,乘積為96,求這兩個數(shù).因為兩數(shù)之和為20,所以這兩個數(shù)不可能同時大于10,也不可能同時小于10,必定是一個大于10,一個小于10.根據(jù)如圖所示的設(shè)法,可設(shè)一個數(shù)為,則另一個數(shù)為,根據(jù)兩數(shù)之積為96,可得.請根據(jù)以上思路解決下列問題:

1)若兩個正整數(shù)之和為100,大數(shù)比小數(shù)大,根據(jù)丟番圖的設(shè)法,這兩個正整數(shù)可表示為_______;

2)請你根據(jù)丟番圖的運(yùn)算方法,計算的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知P(3,3),點(diǎn)B、A分別在x軸正半軸和y軸正半軸上,∠APB90°,則OAOB________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=6,BC=10,ABAC,點(diǎn)P從點(diǎn)B出發(fā)沿著B→A→C的路徑運(yùn)動,同時點(diǎn)Q從點(diǎn)A出發(fā)沿著A→C→D的路徑以相同的速度運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)C時,點(diǎn)Q隨之停止運(yùn)動,設(shè)點(diǎn)P運(yùn)動的路程為x,y=PQ2,下列圖象中大致反映yx之間的函數(shù)關(guān)系的是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABD△ACE中,有下列四個等式:①AB=AC;②AD=AE;③∠1=∠2;④BD=CE.以其中三個條件為題設(shè),填入已知欄中,一個論斷為結(jié)論,填入下面求證欄中,使之組成一個真命題,并寫出證明過程.

已知:

求證:

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列語句:11的平方根。帶根號的數(shù)都是無理數(shù)。1的立方根是-1。的立方根是2。⑤(2)2的算術(shù)平方根是2。125的立方根是±5。有理數(shù)和數(shù)軸上的點(diǎn)一一對應(yīng)。其中正確的有( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:

1yx;

2)(x2)(x4)+-4

3)(x4y)16xy

4)(p4)(p1)6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上每相鄰兩點(diǎn)相距一個單位長度,點(diǎn)A、B、C、D是這些點(diǎn)中的四個,且對應(yīng)的位置如圖所示,它們對應(yīng)的數(shù)分別是ab、c、d

1)若cd互為相反數(shù),則a________;

2)若d2b8,那么點(diǎn)C對應(yīng)的數(shù)是________;

3)若abcd0,ab0的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)甲、乙、丙、丁四人做傳球游戲:第一次由甲將球隨機(jī)傳給乙、丙、丁中的某一人,從第二次起,每一次都由持球者將球再隨機(jī)傳給其他三人中的某一人.求第二次傳球后球回到甲手里的概率.(請用“畫樹狀圖”的方式給出分析過程)

(2)如果甲跟另外n(n≥2)個人做(1)中同樣的游戲,那么,第三次傳球后球回到甲手里的概率是 (請直接寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案