科目: 來源: 題型:
【題目】如圖所示,E,F,G,H分別是四邊形ABCD的邊AB,BC,CD,AD的中點.
(1)探究1:連接對角線AC,BD由三角形中位線定理及平行四邊形的判定定理易得四邊形EFGH為 (不需要證明);
(2)探究2:觀察猜想:
①當四邊形ABCD的對角線AC,BD滿足條件 時,四邊形EFGH是菱形;
②當四邊形ABCD的對角線AC,BD滿足條件 時,四邊形EFGH為矩形.
(3)探究3:當四邊形ABCD滿足什么條件時,四邊形EFGH為正方形?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,將邊長為6的正三角形紙片ABC按如下順序進行兩次折疊,展平后,得折痕AD,BE(如圖①),點O為其交點.
(1)探求AO到OD的數(shù)量關系,并說明理由;
(2)如圖②,若P,N分別為BE,BC上的動點.
(Ⅰ)當PN+PD的長度取得最小值時,求BP的長度;
(Ⅱ)如圖③,若點Q在線段BO上,BQ=1,則QN+NP+PD的最小值= .
查看答案和解析>>
科目: 來源: 題型:
【題目】某小組做“用頻率估計概率”的實驗時,繪出的某一結果出現(xiàn)的頻率折線圖,則符合這一結果的實驗可能是( 。
A. 拋一枚硬幣,出現(xiàn)正面朝上
B. 擲一個正六面體的骰子,出現(xiàn)3點朝上
C. 一副去掉大小王的撲克牌洗勻后,從中任抽一張牌的花色是紅桃
D. 從一個裝有2個紅球1個黑球的袋子中任取一球,取到的是黑球
查看答案和解析>>
科目: 來源: 題型:
【題目】下列命題:①垂線段最短;②同位角相等;③如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行;④內錯角相等,兩直線平行;⑤經(jīng)過一點有且只有一條直線與已知直線平行;⑥如果=2,那么x=2.其中真命題有( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在中,是角平分線,是上的點, 相交于點.
(1) 如圖2,若=90°,求證: ;
(2) 如圖1,若=( 0°< <180°).
①求的值(用含的代數(shù)式表示);
②是否存在,使小于,如果存在,求出的范圍,如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如3+2=(1+)2,善于思考的小明進行了以下探索:設a+b=(m+n)2(其中a,b,m,n均為正整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.
這樣小明就找到了一種把a+b的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當a,b,m,n均為正整數(shù)時,若a+b=(m+n)2,用含m,n的式子分別表示a,b,得a= ,b= ;
(2)利用所探索的結論,找一組正整數(shù)a,b,m,n填空:4+2 =(1+ )2;(答案不唯一)
(3)若a+4=(m+n)2,且a,m,n均為正整數(shù),求a的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉,三角板的兩直角邊分別交射線AC、CB于D、E兩點.圖1,2,3是旋轉三角板得到的圖形中的3種情況.
研究:
(1)三角板繞點P旋轉,觀察線段PD和PE之間有什么數(shù)量關系,并結合圖2加以證明;
(2)三角板繞點P旋轉,△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由;
(3)若將三角板的直角頂點放在斜邊AB上的M處,且AM:MB=1:3,和前面一樣操作,試問線段MD和ME之間有什么數(shù)量關系?并結合圖4加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,PA為⊙O的切線,A為切點,直線PO交⊙O于點E,F(xiàn)過點A作PO的垂線AB垂足為D,交⊙O于點B,延長BO與⊙O交與點C,連接AC,BF.
(1)求證:PB與⊙O相切;
(2)是探究線段EF,OD,OP之間的數(shù)量關系,并加以證明;
(3)若tan∠F= ,求cos∠ACB的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com