科目: 來源: 題型:
【題目】已知,如圖,在四邊形ABCD中,AB∥CD,E,F(xiàn)為對角線AC上兩點,且AE=CF,DF∥BE,AC平分∠BAD.求證:四邊形ABCD為菱形.
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市銷售每臺進價分別為200元、150元的甲、乙兩種型號的電器,下表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
甲種型號 | 乙種型號 | ||
第一周 | 3臺 | 5臺 | 1900元 |
第二周 | 4臺 | 10臺 | 3200元 |
(進價、售價均保持不變,利潤=銷售收入-進貨成本)
⑴求A、B兩種型號的電風(fēng)扇的銷售單價;
⑵若超市準(zhǔn)備用不多于5000元的金額再采購這兩種型號的電風(fēng)扇共30臺,且按(1)中的銷售單價全部售完利潤不少于1850元,則有幾種購貨方案?
⑶在⑵的條件下,超市銷售完這30臺電風(fēng)扇哪種方案利潤最大?最大利潤是多少?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖(1),如果AB∥CD∥EF. 那么∠BAC+∠ACE+∠CEF=360°.
老師要求學(xué)生在完成這道教材上的題目后,嘗試對圖形進行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?
(1)小華首先完成了對這道題的證明,在證明過程中她用到了平行線的一條性質(zhì),小華用到的平行線性質(zhì)可能是______________.
(2)接下來,小華用《幾何畫板》對圖形進行了變式,她先畫了兩條平行線AB,EF,然后在平行線間畫了一點C,連接AC,EC后,用鼠標(biāo)拖動點C,分別得到了圖(2)(3)(4),小華發(fā)現(xiàn)圖(3)正是上面題目的原型,于是她由上題的結(jié)論猜想到圖(2)和(4)中的∠BAC,∠ACE與∠CEF之間也可能存在著某種數(shù)量關(guān)系.然后,她利用《幾何畫板》的度量與計算功能,找到了這三個角之間的數(shù)量關(guān)系.
請你在小華操作探究的基礎(chǔ)上,繼續(xù)完成下面的問題:
①猜想:圖(2)中∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系: .
②補全圖(4),并直接寫出圖中∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系: . (3)小華繼續(xù)探究:如圖(5),若直線AB與直線EF不平行,點G,H分別在直線AB、直線EF上,點C在兩直線外,連接CG,CH,GH,且GH同時平分∠BGC和∠FHC,請?zhí)剿鳌?/span>AGC,∠GCH與∠CHE之間的數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知一次函數(shù)y=x+4的圖象與二次函數(shù)y=ax(x﹣2)的圖象相交于A(﹣1,b)和B,點P是線段AB上的動點(不與A、B重合),過點P作PC⊥x軸,與二次函數(shù)y=ax(x﹣2)的圖象交于點C.
(1)求a、b的值及B點的坐標(biāo);
(2)求線段PC長的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】先閱讀下列一段文字,再解答問題:
已知在平面內(nèi)有兩點,,其兩點間的距離公式為;同時,當(dāng)兩點所在的直線在坐標(biāo)軸上或平行于坐標(biāo)軸或垂直于坐標(biāo)軸時,兩點間距離公式可簡化為或.
(1)已知點A(2,4),B(-2,1),則AB=__________;
(2)已知點C,D在平行于y軸的直線上,點C的縱坐標(biāo)為4,點D的縱坐標(biāo)為-2,則CD=__________;
(3)已知點P(3,1)和(1)中的點A,B,判斷線段PA,PB,AB中哪兩條線段的長是相等的?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點O在直線AB上,OC⊥OD,∠EDO與∠1互余.
(1)求證:ED//AB;
(2)OF平分∠COD交DE于點F,若∠OFD=65°,補全圖形,并求∠1的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,△ABC的三個頂點分別是A(-2,0),B(0,3),C(3,0).
(1)在所給的圖中,畫出這個平面直角坐標(biāo)系;
(2)點A經(jīng)過平移后對應(yīng)點為D(3,-3),將△ABC作同樣的平移得到△DEF,點B的對應(yīng)點為點E,畫出平移后的△DEF;
(3)在(2)的條件下,點M在直線CD上,若DM=2CM,直接寫出點M的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】某學(xué)校準(zhǔn)備開展“陽光體育活動”,決定開設(shè)以下體育活動項目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項,為了解選擇各種體育活動項目的學(xué)生人數(shù),隨機抽取了部分學(xué)生進行調(diào)查,并將通過獲得的數(shù)據(jù)進行整理,繪制出以下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答問題:
(1)這次活動一共調(diào)查了 名學(xué)生;
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,選擇籃球項目的人數(shù)所在扇形的圓心角等于 度;
(4)若該學(xué)校有1500人,請你估計該學(xué)校選擇足球項目的學(xué)生人數(shù)約是 人。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖已知∠1=∠2,∠BAD=∠BCD,則下列結(jié)論:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com