科目: 來源: 題型:
【題目】已知直線 y= -x+5交x軸于A,交y軸于B,直線y=2x﹣4與x軸于D,與直線AB相交于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)求四邊形BODC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】某電視臺(tái)的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機(jī)分選游戲雙方的組員,主持人設(shè)計(jì)了以下游戲:用不透明的白布包住三根顏色長短相同的細(xì)繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細(xì)繩,并拉出,若兩人選中同一根細(xì)繩,則兩人同隊(duì),否則互為反方隊(duì)員.
(1)若甲嘉賓從中任意選擇一根細(xì)繩拉出,求他恰好抽出細(xì)繩AA1的概率;
(2)請(qǐng)用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊(duì)的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn) A,B,C,D 依次在同一條直線上,點(diǎn) E,F 分別在直線 AD 的兩側(cè),已知 BE//CF,∠A=∠D,AE=DF.
(1)求證:四邊形 BFCE 是平行四邊形.
(2)若 AD=10,EC=3,∠EBD=60°,當(dāng)四邊形 BFCE是菱形時(shí),求 AB 的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】平行四邊形ABCD在平面直角坐標(biāo)系中的位置如圖所示,其中A,,反比例函數(shù)的圖象經(jīng)過點(diǎn)C.
(1)求此反比例函數(shù)的解析式;
(2)將平行四邊形ABCD沿x軸翻折得到平行四邊形,請(qǐng)你通過計(jì)算說明點(diǎn)在雙曲線上.
查看答案和解析>>
科目: 來源: 題型:
【題目】先閱讀,并探究相關(guān)的問題:
(閱讀)
的幾何意義是數(shù)軸上,兩數(shù)所對(duì)的點(diǎn),之間的距離,記作,如的幾何意義:表示與兩數(shù)在數(shù)軸上所對(duì)應(yīng)的兩點(diǎn)之間的距離;可以看做,幾何意義可理解為與兩數(shù)在數(shù)軸上對(duì)應(yīng)的兩點(diǎn)之間的距離.
(1)數(shù)軸上表示和的兩點(diǎn)和之間的距離可表示為____________;如果,求出的值;
(2)探究:是否存在最小值,若存在,求出最小值;若不存在,請(qǐng)說明理由;
(3)求的最小值,并指出取最小值時(shí)的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知雙曲線和直線y=mx+n交于點(diǎn)A和B,B點(diǎn)的坐標(biāo)是(2,﹣3),AC垂直y軸于點(diǎn)C,AC=.
(1)求雙曲線和和直線的解析式.
(2)求△AOB的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,P是菱形ABCD的對(duì)角線AC上一動(dòng)點(diǎn),過P作垂直于AC的直線交菱形ABCD的邊于M、N兩點(diǎn),設(shè)AC=2,BD=1,AP=x,則△AMN的面積為y,則y關(guān)于x的函數(shù)圖象的大致形狀是( )
A. B.
C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】小馬虎做一道數(shù)學(xué)題,“已知兩個(gè)多項(xiàng)式,,試求.”其中多項(xiàng)式的二次項(xiàng)系數(shù)印刷不清楚.
(1)小馬虎看答案以后知道,請(qǐng)你替小馬虎求出系數(shù)“”;
(2)在(1)的基礎(chǔ)上,小馬虎已經(jīng)將多項(xiàng)式正確求出,老師又給出了一個(gè)多項(xiàng)式,要求小馬虎求出的結(jié)果.小馬虎在求解時(shí),誤把“”看成“”,結(jié)果求出的答案為.請(qǐng)你替小馬虎求出“”的正確答案.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=4,AC=3,BC=5,DE是BC的垂直平分線,DE分別交BC、AB于點(diǎn)D、E.
(1)求證:△ABC為直角三角形.
(2)求AE的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com