相關習題
 0  357849  357857  357863  357867  357873  357875  357879  357885  357887  357893  357899  357903  357905  357909  357915  357917  357923  357927  357929  357933  357935  357939  357941  357943  357944  357945  357947  357948  357949  357951  357953  357957  357959  357963  357965  357969  357975  357977  357983  357987  357989  357993  357999  358005  358007  358013  358017  358019  358025  358029  358035  358043  366461 

科目: 來源: 題型:

【題目】若兩條拋物線的頂點相同,則稱它們?yōu)?/span>友好拋物線,拋物線C1y1=﹣2x2+4x+2C2u2=﹣x2+mx+n友好拋物線

1)求拋物線C2的解析式.

2)點A是拋物線C2上在第一象限的動點,過AAQx軸,Q為垂足,求AQ+OQ的最大值.

3)設拋物線C2的頂點為C,點B的坐標為(﹣1,4),問在C2的對稱軸上是否存在點M,使線段MB繞點M逆時針旋轉(zhuǎn)90°得到線段MB′,且點B′恰好落在拋物線C2上?若存在求出點M的坐標,不存在說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】操作與證明:如圖1,把一個含45°角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.

(1)連接AE,求證:AEF是等腰三角形;

猜想與發(fā)現(xiàn):

(2)在(1)的條件下,請判斷MD、MN的數(shù)量關系和位置關系,得出結論.

結論1:DM、MN的數(shù)量關系是

結論2:DM、MN的位置關系是

拓展與探究:

(3)如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個結論還成立嗎?若成立,請加以證明;若不成立,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,點的內(nèi)部,,在上分別取點、,使的周長最短,則周長的最小值為(

A.4B.8C.16D.32

查看答案和解析>>

科目: 來源: 題型:

【題目】在一次籃球比賽中,如圖隊員甲正在投籃.已知球出手時離地面m,與籃圈中心的水平距離為7 m,球出手后水平距離為4 m時達到最大高度4 m,設籃球運行軌跡為拋物線,籃圈距地面3 m.

(1)建立如圖所示的平面直角坐標系,問此球能否準確投中?

(2)此時,對方隊員乙在甲面前1 m處跳起蓋帽攔截,已知乙的最大摸高為3.1 m,那么他能否獲得成功?

查看答案和解析>>

科目: 來源: 題型:

【題目】問題情境:如圖,在RtABC中,∠ACB=90°BAC=30°.

動手操作:(1)若以直角邊AC所在的直線為對稱軸.將RtABC作軸對稱變換,請你在原圖上作出它的對稱圖形:

觀察發(fā)現(xiàn):(2)RtABC和它的對稱圖形組成了什么圖形?你最準確的判斷是   

合作交流:(3)根據(jù)上面的圖形,請你猜想直角邊BC與斜邊AB的數(shù)量關系,并證明你的猜想.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知ABE≌△ACD.

(1)如果BE=6,DE=2,求BC的長;

(2)如果∠BAC=75°,BAD=30°,求∠DAE的度數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.

(1)求證:AB=AC;

(2)若AB=4,BC=,求CD的長.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,有一個長為24米的籬笆,一面利用墻(墻的最大長度a15米)圍成的中間隔有一道籬笆的長方形花圃.設花圃的寬ABx米,面積為S平方米.

(1)求Sx的函數(shù)關系式;

(2)如果要使圍成花圃面積最大,求AB的長為多少米?

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,已知ABC中,AB=AC,BAD=30°,AD=AE,求∠EDC的度數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,O 的內(nèi)接四邊形 ABCD 兩組對邊延長線分別交于點 E、F

(1)若E=∠F,求證:ADC=∠ABC

(2)若E=∠F=40°,求A 的度數(shù);

(3)若E=30°,∠F=40°,求A 的度數(shù).

查看答案和解析>>

同步練習冊答案