科目: 來源: 題型:
【題目】某超市銷售一種牛奶,進價為每箱24元,規(guī)定售價不低于進價.現(xiàn)在的售價為每箱36元,每月可銷售60箱.市場調(diào)查發(fā)現(xiàn):若這種牛奶的售價每降價1元,則每月的銷量將增加10箱,設(shè)每箱牛奶降價x元(x為正整數(shù)),每月的銷量為y箱.
(1)寫出y與x中間的函數(shù)關(guān)系式和自變量的取值范圍;
(2)超市如何定價,才能使每月銷售牛奶的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】某公司欲將件產(chǎn)品全部運往甲,乙,丙三地銷售(每地均有產(chǎn)品銷售),運費分別為40元/件,24元/件,7元/件,且要求運往乙地的件數(shù)是運往甲地件數(shù)的3倍,設(shè)安排(為正整數(shù))件產(chǎn)品運往甲地.
(1)根據(jù)信息填表:
甲地 | 乙地 | 丙地 | |
產(chǎn)品件數(shù)(件) | |||
運費(元) |
(2)若總運費為6300元,求與的函數(shù)關(guān)系式并求出的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,已知線段a,P為線段a上任意一點,已知圖形M,Q為圖形M上任意一點,當(dāng)P,Q兩點間的距離最小時,將此時PQ的長度稱為圖形M與線段a的近點距;當(dāng)P,Q兩點間的距離最大時,將此時PQ的長度稱為圖形M與線段a的遠點距.
根據(jù)閱讀材料解決下列問題:
如圖1,在平面直角坐標系xOy中,點A的坐標為(﹣2,﹣2),正方形ABCD的對稱中心為原點O.
(1)線段AB與線段CD的近點距是 ,遠點距是 .
(2)如圖2,直線y=﹣x+6與x軸,y軸分別交于點E,F,則線段EF和正方形ABCD的近點距是 ,遠點距是 ;
(3)直線y=x+b(b≠0)與x軸,y軸分別交于點R,S,線段RS與正方形ABCD的近距點是,則b的值是 ;
(4)在平面直角坐標系xOy中,有一個矩形GHMN,若此矩形至少有一個頂點在以O為圓心1為半徑的圓上,其余各點可能在圓上或圓內(nèi),將正方形ABCD繞點O旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中,它與矩形GHMN的近點距的最小值是 ,遠點距的最大值是 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,點E為AB的中點,F為線段BE上任意一點,將線段EF繞點E逆時針旋轉(zhuǎn)90°,得到線段EG.
(1)按請按要求補全圖形:連接BG過點G作GH⊥BG,交對角線AC于點H,連接DH;
(2)判斷DH與GH的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)y=x+|x﹣2|的圖象與性質(zhì)
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=x+|x﹣2|的圖象與性質(zhì)進行了探究
下面是小明的探究過程,請補充完成:
(1)化簡函數(shù)解析式,當(dāng)x≥2時,y= ;當(dāng)x<2時,y= ;
(2)根據(jù)(1)中的結(jié)果,請在圖1的坐標系中畫出函數(shù)y=x+|x﹣2|的圖象;
(3)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì): ;
(4)結(jié)合畫出的函數(shù)圖象,利用圖2解決問題,若關(guān)于x的方程ax+1=x+|x﹣2|有兩個實數(shù)根,直接寫出實數(shù)a的取值范圍: .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一次函數(shù)y=x+3的圖象分別與y軸,x軸交于點A,B,點P從點B出發(fā),沿射線BA以每秒1個單位的速度運動,設(shè)點P的運動時間為t秒.
(1)點P在運動過程中,若某一時刻,△OPA的面積為3,求此時P的坐標;
(2)在整個運動過程中,當(dāng)t為何值時,△AOP為等腰三角形?請直接寫出t的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了“還城市一片藍天”,市政府決定大力發(fā)展公共交通,鼓勵市民乘公交車或地鐵出行.設(shè)每天公交車和地鐵的運營收入為y百萬元,客流量為x百萬人,以(x,y)為坐標的點都在左圖中對應(yīng)的射線上.其中,運營收入=票價收入﹣運營成本.交通部門經(jīng)過調(diào)研,采取了如圖所示的調(diào)整方案.
(1)在左圖中,代表公交車運營情況的(x,y)對應(yīng)的點在射線 上,公交車的日運營成本是 百萬元,當(dāng)客流量x滿足 時,公交車的運營收入超過4百萬元;
(2)求調(diào)整后地鐵每天的運營收入和客流量之間的函數(shù)關(guān)系,不要求寫自變量的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,矩形ABCD中,點E是邊AD上動點,點F是邊BC上動點,連接EF,把矩形ABCD沿直線EF折疊,點B恰好落在邊AD上,記為點G;如圖2,把矩形展開鋪平,連接BE,FG.
(1)判斷四邊形BEGF的形狀一定是 ,請證明你的結(jié)論;
(2)若矩形邊AB=4,BC=8,直接寫出四邊形BEGF面積的最大值為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】尺規(guī)作圖:
已知:線段AB,BC,∠ABC=90°,求作:矩形ABCD.
下面是小敏設(shè)計的尺規(guī)作圖過程:
做法:①以點C為圓心,AB長為半徑畫;
②以點A為圓心,BC長為半徑畫。
③兩弧在BC上方交于點D連接AD,CD,四邊形ABCD即為所求
根據(jù)小敏設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī)補全圖形;(保留作圖痕跡)
(2)完成下面的證明
證明:∵AB= ,CB= ,
∴四邊形ABCD為平行四邊形( )
又∵∠ABC90°
∴平行四邊形ABCD為矩形( )(填推理依據(jù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com