科目: 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.
(1)求拋物線的解析式;
(2)當點P運動到什么位置時,△PAB的面積有最大值?
(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,等腰△ABC的周長為21,底邊BC=5,AB的垂直平分線DE交AB于點D,交AC于點E,則△BEC的周長為( 。
A. 13B. 16C. 8D. 10
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下列材料,完成任務:
自相似圖形
定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務:
(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過點C作CD⊥AB于點D,則CD將△ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).
請從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
查看答案和解析>>
科目: 來源: 題型:
【題目】等腰直角三角形ABC中,∠BAC=90°,BC=12,點M為BC中點,含45°的直角三角板的銳角頂點與M重合,當三角板繞點M旋轉時,三角板與兩直角邊交于點P、Q.P、Q分別在AB、AC邊上,設BP=x,CQ=y(tǒng).
(1)求y與x的函數(shù)關系式;
(2)寫出x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知CD⊥AB于D,現(xiàn)有四個條件:①AD=ED ②∠A=∠BED ③∠C=∠B ④AC=EB,那么不能得出△ADC≌△EDB的條件是( ).
A.①③B.②④
C.①④D.②③
查看答案和解析>>
科目: 來源: 題型:
【題目】△ABC中,點O是AC上一動點,過點O作直線MN∥BC,若MN交∠BCA的平分線于點E,交∠DCA的平分線于點F,連接AE、AF.
⑴說明:OE=OF
⑵當點O運動到何處時,四邊形AECF是矩形,證明你的結論
⑶在⑵的條件下,當⊿ABC滿足什么條件時,四邊形AECF為正方形.
查看答案和解析>>
科目: 來源: 題型:
【題目】某甜品店計劃訂購一種鮮奶,根據(jù)以往的銷售經(jīng)驗,當天的需求量與當天的最高氣溫T有關,現(xiàn)將去年六月份(按30天計算)的有關情況統(tǒng)計如下:(最高氣溫與需求量統(tǒng)計表)
最高氣溫(單位:攝氏度) | 需求量(單位:杯) |
T<25 | 250 |
300 | |
400 |
(1)求去年六月份最高氣溫不高于30℃的天數(shù).
(2)若以最高氣溫位于各區(qū)間的頻率估計最高氣溫位于該區(qū)間的概率,求去年六月份這種鮮奶一天的需求量不超過250杯的概率.
(3)若今年六月份每天的進貨量均為350杯,每杯的進價為5元,售價為10元,未售出的這種鮮奶廠家以1元的價格收回銷毀,假設今年與去年的情況大致一樣,若今年六月份某天的最高氣溫T滿足大于等于25℃小于30℃ ,試估計這一天銷售這種鮮奶所獲得的利潤為多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現(xiàn)需降價處理,且經(jīng)市場調(diào)查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:
(1)若設每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數(shù)關系式,并求出自變量x的取值范圍;
(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com