科目: 來源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標系,拋物線可以用y=x2+bx+c表示,且拋物線上的點C到OB的水平距離為3 m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目: 來源: 題型:
【題目】(8分)如圖,AC是⊙O的直徑,OB是⊙O的半徑,PA切⊙O于點A,PB與AC的延長線交于點M,∠COB=∠APB.
(1)求證:PB是⊙O的切線;
(2)當OB=3,PA=6時,求MB,MC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某測量小組為了測量山BC的高度,在地面A處測得山頂B的仰角45°,然后沿著坡度為i=1:的坡面AD走了200米達到D處,此時在D處測得山頂B的仰角為60°,求山高BC(結(jié)果保留根號).
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場,為了吸引顧客,在“白色情人節(jié)”當天舉辦了商品有獎酬賓活動,凡購物滿200元者,有兩種獎勵方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎的機會.已知在搖獎機內(nèi)裝有2個紅球和2個白球,除顏色外其它都相同,搖獎者必須從搖獎機內(nèi)一次連續(xù)搖出兩個球,根據(jù)球的顏色(如表)決定送禮金券的多少.
球 | 兩紅 | 一紅一白 | 兩白 |
禮金券(元) | 18 | 24 | 18 |
(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.
(2)如果一名顧客當天在本店購物滿200元,若只考慮獲得最多的禮品券,請你幫助分析選擇哪種方案較為實惠.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于某一函數(shù)給出如下定義:若存在實數(shù),當其自變量的值為時,其函數(shù)值等于,則稱為這個函數(shù)的不變值.在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差稱為這個函數(shù)的不變長度.特別地,當函數(shù)只有一個不變值時,其不變長度為零.例如,圖1中的函數(shù)有0,1兩個不變值,其不變長度等于1.
(1)分別判斷函數(shù),有沒有不變值?如果有,請寫出其不變長度;
(2)函數(shù)且,求其不變長度的取值范圍;
(3)記函數(shù)的圖像為,將沿翻折后得到的函數(shù)圖像記為,函數(shù)的圖像由和兩部分組成,若其不變長度滿足,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線與軸交于兩點,與軸交于點.
(1)求的取值范圍;
(2)若,直線經(jīng)過點,與軸交于點,且,求拋物線的解析式;
(3)若點在點左邊,在第一象限內(nèi),(2)中所得到拋物線上是否存在一點,使直線分的面積為兩部分?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在正方形中,連接,為射線上的一個動點(與點不重合),連接,的垂直平分線交線段于點,連接,.
提出問題:當點運動時,的度數(shù)是否發(fā)生改變?
探究問題:
(1)首先考察點的兩個特殊位置:
①當點與點重合時,如圖1所示,____________
②當時,如圖2所示,①中的結(jié)論是否發(fā)生變化?直接寫出你的結(jié)論:__________;(填“變化”或“不變化”)
(2)然后考察點的一般位置:依題意補全圖3,圖4,通過觀察、測量,發(fā)現(xiàn):(1)中①的結(jié)論在一般情況下_________;(填“成立”或“不成立”)
(3)證明猜想:若(1)中①的結(jié)論在一般情況下成立,請從圖3和圖4中任選一個進行證明;若不成立,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)計算:2﹣1+(π﹣3.14)0+sin60°﹣|﹣|
(2)如圖,在△ABC中,AB=AC=10,sinC=,點D是BC上一點,且DC=AC.求BD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠計劃生產(chǎn)甲、乙兩種產(chǎn)品共2500噸,每生產(chǎn)1噸甲產(chǎn)品可獲得利潤0.3萬元,每生產(chǎn)1噸乙產(chǎn)品可獲得利潤0.4萬元.設(shè)該工廠生產(chǎn)了甲產(chǎn)品x(噸),生產(chǎn)甲、乙兩種產(chǎn)品獲得的總利潤為y(萬元).
(1)求y與x之間的函數(shù)表達式;
(2)若每生產(chǎn)1噸甲產(chǎn)品需要A原料0.25噸,每生產(chǎn)1噸乙產(chǎn)品需要A原料0.5噸.受市場影響,該廠能獲得的A原料至多為1000噸,其它原料充足.求出該工廠生產(chǎn)甲、乙兩種產(chǎn)品各為多少噸時,能獲得最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com