科目: 來源: 題型:
【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標(biāo)桿BC,再在AB的延長線上選擇點D豎起標(biāo)桿DE,使得點E與點C、A共線.
已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關(guān)測量信息,求河寬AB.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,E為BC邊上一點,連結(jié)AE.已知AB=8,CE=2,F(xiàn)是線段AE上一動點.若BF的延長線交正方形ABCD的一邊于點G,且滿足AE=BG,則的值為________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC于點F,連接DF,分析下列五個結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四邊形CDEF=S△ABF,其中正確的結(jié)論有________個。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,點M為對角線AC上的一個動點(不與端點A,C重合),過點M作ME⊥AD,MF⊥DC,垂足分別為E,F(xiàn),則四邊形EMFD面積的最大值為( )
A. 6 B. 12 C. 18 D. 24
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,拋物線與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,直線AE:與拋物線相交于另一點E,點D為拋物線的頂點.
(1)求直線BC的解析式及點E的坐標(biāo);
(2)如圖2,直線AE上方的拋物線上有一點P,過點P作PF⊥BC于點F,過點P作平行于軸的直線交直線BC于點G,當(dāng)△PFG周長最大時,在軸上找一點M,在AE上找一點N,使得值最小,請求出此時N點的坐標(biāo)及的最小值;
(3)在第(2)問的條件下,點R為拋物線對稱軸上的一點,在平面直角坐標(biāo)系中是否存在點S,使以點N,E,R,S為頂點的四邊形為矩形,若存在,請直接寫出點S的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下列材料,并解決問題:任意一個大于1的正整數(shù)m都可以表示為:m=p2+q(p、q是正整數(shù)),在m的所有這種表示中,如果最小時,規(guī)定:F(m)=.例如:21可以表示為:21=12+20=22+17=32+12=42+5,因為>>>,所以F(21)=.
(1)求F(33)的值;
(2)如果一個正整數(shù)n可以表示為t2-t(其中t≥2,且是正整數(shù)),那么稱n是次完全平方數(shù),證明:任何一個次完全平方數(shù)n,都有F(n)=1;
(3)一個三位自然數(shù)k,k=100a+10b+c(其中1≤a≤9,0≤b≤9,0≤c≤9,且a≤c,a、b、c為整數(shù)),滿足十位上的數(shù)字恰好等于百位上的數(shù)字與個位上的數(shù)字之和,且k與其十位上數(shù)字的2倍之和能被9整除,求所有滿足條件的k中F(k)的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知正方形ABCD,對角線AC、BD交于點O,點E在對角線BD上,連接AE.點G是AD延長線上一點,DF平分∠GDC,且DF=BE,連接FB、FC,F(xiàn)B與AC交于點M.
(1)若點E是BD的三等分點(DE<BE),BF=,求△ABE的面積;
(2)求證:DE=2CM.
查看答案和解析>>
科目: 來源: 題型:
【題目】四季水果店正準(zhǔn)備促銷廣西“脆皮桔”和山東煙臺“紅富士蘋果”,已知“脆皮桔”的進價為12元/千克,售價為24元/千克,“紅富士蘋果”的進價為10元/千克,售價為20元/千克,第一天該店銷售兩種水果共獲利1156元,其中“脆皮桔”的銷量比“紅富士蘋果”銷量的4倍少10千克.
(1)求第一天這兩種水果的銷量分別是多少千克?
(2)該店在第一天的售價基礎(chǔ)上銷售一段時間后,天氣突然變冷不利于“脆皮桔”的保存,為了更好的銷售這兩種水果,店主決定對“脆皮桔”在原來售價基礎(chǔ)上降價a%,銷量在原有基礎(chǔ)上增加a%,“紅富士蘋果”在原來售價基礎(chǔ)上提升a%,銷量比原來上升了30千克,其中兩種水果的進價均不變,結(jié)果每天獲利比原來多300元,求a的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知直線y=-x+3與x軸、y軸分別交于A,B兩點,拋物線y=-x2+bx+c經(jīng)過B點,且與x軸交于C,D兩點(點C在左側(cè)),且C(-3,0).
(1)求拋物線的解析式;
(2)平移直線AB,使得平移后的直線與拋物線分別交于點D,E,與y軸交于點F,連接CE,CF,求△CEF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com