科目: 來源: 題型:
【題目】如圖,用細線懸掛一個小球,小球在豎直平面內的A、C兩點間來回擺動,A點與地面距離AN=14cm,小球在最低點B時,與地面距離BM=5cm,∠AOB=66°,求細線OB的長度.(參考數據:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)
【答案】15cm
【解析】
試題設細線OB的長度為xcm,作AD⊥OB于D,證出四邊形ANMD是矩形,得出AN=DM=14cm,求出OD=x-9,在Rt△AOD中,由三角函數得出方程,解方程即可.
試題解析:設細線OB的長度為xcm,作AD⊥OB于D,如圖所示:
∴∠ADM=90°,
∵∠ANM=∠DMN=90°,
∴四邊形ANMD是矩形,
∴AN=DM=14cm,
∴DB=14﹣5=9cm,
∴OD=x﹣9,
在Rt△AOD中,cos∠AOD=,
∴cos66°==0.40,
解得:x=15,
∴OB=15cm.
【題型】解答題
【結束】
20
【題目】已知:如圖,在半徑為的中,、是兩條直徑,為的中點,的延長線交于點,且,連接。.
(1)求證:;
(2)求的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】在中,,,,點從出發(fā)沿方向在運動速度為3個單位/秒,點從出發(fā)向點運動,速度為1個單位/秒,、同時出發(fā),點到點時兩點同時停止運動.
(1)點在線段上運動,過作交邊于,時,求的值;
(2)運動秒后,,求此時的值;
(3)________時,.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標是2.
(1)求拋物線的解析式及頂點坐標;
(2)在軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;
(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】“圓材埋壁”是我國古代著名的數學著作《九章算術》中的一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長六寸,問徑幾何?”用現(xiàn)代的數學語言表述是:“CD為的直徑,弦,垂足為E,CE=1寸,AB=10寸,求直徑CD的長”,依題意得CD的長為( )
A.12寸B.13寸C.24寸D.26寸
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線yx m交 y軸的正半軸于點A,交x軸的正半軸于點B,過點A的直線AF交x軸的負半軸于點F,∠AFO=45°.
(1)求∠FAB的度數;
(2)點 P是線段OB上一點,過點P作 PQ⊥OB交直線 FA于點Q,連接 BQ,取 BQ的中點C,連接AP、AC、CP,過點C作 CR⊥AP于點R,設 BQ的長為d,CR的長為h,求d與 h的函數關系式(不要求寫出自變量h的取值范圍);
(3)在(2)的條件下,過點 C 作 CE⊥OB于點E,CE交 AB于點D,連接 AE,∠AEC=2∠DAP,EP=2,作線段 CD 關于直線AB的對稱線段DS,求直線PS與直線 AF的交點K的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:矩形ABCD內接于⊙O,連接 BD,點E在⊙O上,連接 BE交 AD于點F,∠BDC+45°=∠BFD,連接ED.
(1)如圖 1,求證:∠EBD=∠EDB;
(2)如圖2,點G是 AB上一點,過點G作 AB的垂線分別交BE和 BD于點H和點K,若HK=BG+AF,求證:AB=KG;
(3)如圖 3,在(2)的條件下,⊙O上有一點N,連接 CN分別交BD和 AD于點 M和點 P,連接 OP,∠APO=∠CPO,若 MD=8,MC= 3,求線段 GB的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】為美化小區(qū)環(huán)境,物業(yè)計劃安排甲、乙兩個工程隊完成小區(qū)綠化工作.已知甲工程隊每天綠化面積是乙工程隊每天綠化面積的2倍,甲工程隊單獨完成600m2的綠化面積比乙工程隊單獨完成600m2的綠化面積少用2天.
(1)求甲、乙兩工程隊每天綠化的面積分別是多少m2;
(2)小區(qū)需要綠化的面積為9600m2,物業(yè)需付給甲工程隊每天綠化費為0.3萬元,付給乙工程隊每天綠化費為 0.2萬元,若要使這次的綠化總費用不超過10萬元,則至少應安排甲工程隊工作多少天?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:在正方形ABCD中,點E在 BC邊上,連接 DE,以DE為直角邊作等腰直角三角形EDF(∠DEF=90°),過點C作 DE的垂線,垂足為G,交AB于點H,連接 FH.
(1)如圖 1,求證:四邊形FECH為平行四邊形
(2)如圖 2,連接 DH和 AF,點 E 為 BC 中點,在不添加任何輔助線與字母的情況下,請直接寫出與平行四邊形FECH面積相等的所有三角形.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了解學生對中國民族樂器的喜愛情況,某校在全校范圍內隨機抽取了部分學生進行問卷調查,要求學生在“古箏、二胡、竹笛、揚琴、琵琶”五個選項中,選取自己喜愛的一種樂器(必選且只選一種),學校將收集到的調查結果適當整理后,繪制成如圖所示的兩幅不完整的統(tǒng)計圖.請你根據圖中提供的信息回答下列問題:
(1)本次調查共抽取了多少名學生?
(2)通過計算補全條形統(tǒng)計圖;
(3)若該校共有2020名學生,請你估計該校喜愛“竹笛”的學生有多少名.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,方格紙中的每個小正方形的邊長均為1,線段 AB的兩個端點均在小正方形的頂點上.
(1)在圖中畫出以AB為直角邊的Rt△ABC,點C在小正方形的頂點上,且Rt△ABC的面積為5;
(2)在(1)的條件下,畫出△BCD,點D在小正方形的頂點上,且tan∠CDB,連接AD,請直接寫出線段AD的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com