科目: 來源: 題型:
【題目】如圖,某塔觀光層的最外沿點E為蹦極項目的起跳點.已知點E離塔的中軸線AB的距離OE為10米,塔高AB為123米(AB垂直地面BC),在地面C處測得點E的仰角α=45°,從點C沿CB方向前行40米到達(dá)D點,在D處測得塔尖A的仰角β=60°,求點E離地面的高度EF.(結(jié)果精確到0.1米)
查看答案和解析>>
科目: 來源: 題型:
【題目】在星期一的第八節(jié)課,我校體育老師隨機抽取了九年級的總分學(xué)生進(jìn)行體育中考的模擬測試,并對成績進(jìn)行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,按得分劃分成A、B、C、D、E、F六個等級,并繪制成如下兩幅不完整的統(tǒng)計圖表.
等級 | 得分x(分) | 頻數(shù)(人) |
A | 95<x≤100 | 4 |
B | 90<x≤95 | m |
C | 85<x≤90 | n |
D | 80<x≤85 | 24 |
E | 75<x≤80 | 8 |
F | 70<x≤75 | 4 |
請你根據(jù)圖表中的信息完成下列問題:
1)本次抽樣調(diào)查的樣本容量是 .其中m= ,n= .
2)扇形統(tǒng)計圖中,求E等級對應(yīng)扇形的圓心角α的度數(shù);
3)我校九年級共有700名學(xué)生,估計體育測試成績在A、B兩個等級的人數(shù)共有多少人?
4)我校決定從本次抽取的A等級學(xué)生(記為甲、乙、丙、。┲,隨機選擇2名成為學(xué)校代表參加全市體能競賽,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線=﹣3與=+1交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.則以下結(jié)淪:①無論x取何值,的值總是正數(shù);②2a=1;③當(dāng)x=0時,﹣=4;④2AB=3AC.其中正確結(jié)論是______.(填序號)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,反比例函數(shù)y=(x<0)的圖象經(jīng)過矩形OABC的對角線AC的中點M,分別與AB,BC交于點D、E,若BD=3,OA=4,則k的值為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為( )
A. B. 2C. D. 5
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,CD是弦,AB⊥CD,垂足為E,點P在⊙O上,連接BP、PD、BC.若CD=,sinP=,則⊙O的直徑為( )
A. 8 B. 6 C. 5 D.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校九年級數(shù)學(xué)小組在課外活動中,研究了同一坐標(biāo)系中兩個反比例函數(shù)與 在第一象限圖象的性質(zhì),經(jīng)歷了如下探究過程:
操作猜想:
(1)如圖①,當(dāng),時,在軸的正方向上取一點作軸的平行線交于點,交于點.當(dāng)時,________,________,________;當(dāng)時,________,________,________;當(dāng)時,猜想________.
數(shù)學(xué)思考:
(2)在軸的正方向上任意取點作軸的平行線,交于點、交于點,請用含、的式子表示的值,并利用圖②加以證明.
推廣應(yīng)用:
(3)如圖③,若,,在軸的正方向上分別取點、 作軸的平行線,交于點、,交于點、,是否存在四邊形是正方形?如果存在,求的長和點的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)藝術(shù)節(jié)期間,學(xué)校向?qū)W生征集書畫作品,楊老師從全校30個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,回答下列問題:
(1)楊老師采用的調(diào)查方式是 (填“普查”或“抽樣調(diào)查”);
(2)請你將條形統(tǒng)計圖補充完整,并估計全校共征集多少件作品?
(3)如果全校征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學(xué)生性別相同的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,DE分別是AB,AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連CF
(1)求證:四邊形BCFE是菱形;
(2)若CE=6,∠BEF=120°,求菱形BCFE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com