科目: 來源: 題型:
【題目】某農(nóng)作物的生長率P與溫度t(℃)有如下關(guān)系:如圖1,當(dāng)10≤t≤25時可近似用函數(shù)刻畫;當(dāng)25≤t≤37時可近似用函數(shù)刻畫.
(1)求h的值.
(2)按照經(jīng)驗,該作物提前上市的天數(shù)m(天)與生長率P滿足函數(shù)關(guān)系:
生長率P | 0.2 | 0.25 | 0.3 | 0.35 |
提前上市的天數(shù)m(天) | 0 | 5 | 10 | 15 |
①請運用已學(xué)的知識,求m關(guān)于P的函數(shù)表達(dá)式;
②請用含的代數(shù)式表示m ;
(3)天氣寒冷,大棚加溫可改變農(nóng)作物生長速度.在(2)的條件下,原計劃大棚恒溫20℃時,每天的成本為200元,該作物30天后上市時,根據(jù)市場調(diào)查:每提前一天上市售出(一次售完),銷售額可增加600元.因此給大棚繼續(xù)加溫,加溫后每天成本w(元)與大棚溫度t(℃)之間的關(guān)系如圖2.問提前上市多少天時增加的利潤最大?并求這個最大利潤(農(nóng)作物上市售出后大棚暫停使用).
查看答案和解析>>
科目: 來源: 題型:
【題目】小波在復(fù)習(xí)時,遇到一個課本上的問題,溫故后進(jìn)行了操作、推理與拓展.
(1)溫故:如圖1,在△ABC中,AD⊥BC于點D,正方形PQMN的邊QM在BC上,頂點P,N分別在AB, AC上,若BC=6,AD=4,求正方形PQMN的邊長.
(2)操作:能畫出這類正方形嗎?小波按數(shù)學(xué)家波利亞在《怎樣解題》中的方法進(jìn)行操作:如圖2,任意畫△ABC,在AB上任取一點P′,畫正方形P′Q′M′N′,使Q′,M′在BC邊上,N′在△ABC內(nèi),連結(jié)B N′并延長交AC于點N,畫NM⊥BC于點M,NP⊥NM交AB于點P,PQ⊥BC于點Q,得到四邊形PQMN.小波把線段BN稱為“波利亞線”.
(3)推理:證明圖2中的四邊形PQMN 是正方形.
(4)拓展:在(2)的條件下,于波利業(yè)線B N上截取NE=NM,連結(jié)EQ,EM(如圖3).當(dāng)tan∠NBM=時,猜想∠QEM的度數(shù),并嘗試證明.
請幫助小波解決“溫故”、“推理”、“拓展”中的問題.
查看答案和解析>>
科目: 來源: 題型:
【題目】某挖掘機的底座高AB=0.8米,動臂BC=1.2米,CD=1.5米,BC與CD的固定夾角∠BCD=140°.初始位置如圖1,斗桿頂點D與鏟斗頂點E所在直線DE垂直地面AM于點E,測得∠CDE=70°(示意圖2).工作時如圖3,動臂BC會繞點B轉(zhuǎn)動,當(dāng)點A,B,C在同一直線時,斗桿頂點D升至最高點(示意圖4).
(1)求挖掘機在初始位置時動臂BC與AB的夾角∠ABC的度數(shù).
(2)問斗桿頂點D的最高點比初始位置高了多少米(精確到0.1米)?
(考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,)
查看答案和解析>>
科目: 來源: 題型:
【題目】在推進(jìn)嘉興市城鄉(xiāng)生活垃圾分類的行動中,某社區(qū)為了了解居民掌握垃圾分類知識的 情況進(jìn)行調(diào)查.其中A、B 兩小區(qū)分別有 500 名居民參加了測試,社區(qū)從中各隨機 抽取50 名居民成績進(jìn)行整理得到部分信息:
(信息一)A 小區(qū) 50 名居民成績的頻數(shù)直方圖如下(每一組含前一個邊界值,不含后一個邊界值):
(信息二)上圖中,從左往右第四組的成績?nèi)缦?/span>
(信息三)A、B 兩小區(qū)各 50 名居民成績的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(80 分及以上為優(yōu)秀)、方差等數(shù)據(jù)如下(部分空缺):
根據(jù)以上信息,回答下列問題:
(1)求A 小區(qū) 50 名居民成績的中位數(shù).
(2)請估計A 小區(qū) 500 名居民成績能超過平均數(shù)的人數(shù).
(3)請盡量從多個角度,選擇合適的統(tǒng)計量分析 A,B 兩小區(qū)參加測試的居民掌握垃圾分類知識的情況.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一副含30°和45°角的三角板ABC和EDF拼合在個平面上,邊AC與EF重合,AC=12cm.當(dāng)點E從點A出發(fā)沿AC方向滑動時,點F同時從點C出發(fā)沿射線BC方向滑動.當(dāng)點E從點A滑動到點C時,點D運動的路徑長為__cm;連接BD,則△ABD的面積最大值為___cm2.
查看答案和解析>>
科目: 來源: 題型:
【題目】小飛研究二次函數(shù)y=-(x-m)2-m+1(m為常數(shù))性質(zhì)時如下結(jié)論:①這個函數(shù)圖象的頂點始終在直線y=-x+1上;②存在一個m的值,使得函數(shù)圖象的頂點與軸的兩個交點構(gòu)成等腰直角三角形;③點A(x1,y1)與點B(x2,y2)在函數(shù)圖象上,若x1<x2,x1+x2>2m,則y1<y2;④當(dāng)-1<x<2時,y隨x的增大而增大,則m的取值范圍為m≥2其中錯誤結(jié)論的序號是( )
A. ①B. ②C. ③D. ④
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年5月26日第5屆中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會召開.某市在五屆數(shù)博會上的產(chǎn)業(yè)簽約金額的折線統(tǒng)計圖如圖.下列說法正確的是( )
A. 簽約金額逐年增加
B. 與上年相比,2019年的簽約金額的增長量最多
C. 簽約金額的年增長速度最快的是2016年
D. 2018年的簽約金額比2017年降低了22.98%
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知P(x1,y1)Q(x2,y2),定義P、Q兩點的橫坐標(biāo)之差的絕對值與縱坐標(biāo)之差的絕對值的和為P、Q兩點的直角距離,記作d(P,Q).即d(P,Q)=|x2﹣x1|+|y2﹣y1|
如圖1,在平面直角坐標(biāo)系xOy中,A(1,4),B(5,2),則d(A,B)=|5﹣1|+|2﹣4|=6.
(1)如圖2,已知以下三個圖形:
①以原點為圓心,2為半徑的圓;
②以原點為中心,4為邊長,且各邊分別與坐標(biāo)軸垂直的正方形;
③以原點為中心,對角線分別在兩條坐標(biāo)軸上,對角線長為4的正方形.
點P是上面某個圖形上的一個動點,且滿足d(O,P)=2總成立.寫出符合題意的圖形對應(yīng)的序號 .
(2)若直線y=k(x+3)上存在點P使得d(O,P)=2,求k的取值范圍.
(3)在平面直角坐標(biāo)系xOy中,P為動點,且d(O,P)=3,⊙M圓心為M(t,0),半徑為1.若⊙M上存在點N使得PN=1,求t的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知梯形ABCD中,AD∥BC,AB=AC,E是邊BC上的點,且∠AED=∠CAD,DE交AC于點F.
(1)求證:△ABE∽△DAF;
(2)當(dāng)ACFC=AEEC時,求證:AD=BE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com