科目: 來源: 題型:
【題目】一個不透明的口袋中有1個白球3個紅球,每個小球除顏色外其他都相同.
(1)攪勻后,甲先從袋中隨機取出1個小球,記下顏色后不放回;乙再從袋中隨機取出1個小球.用畫樹狀圖或列表的方法,求甲乙兩人取出的都是紅球的概率;
(2)攪勻后從中任意取出一個球,要使取出紅球的概率為,應添加幾個什么顏色的球?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,AD、BD分別是△ABC的內角∠BAC、∠ABC的平分線,過點A作AE上AD,交BD的延長線于點E.
(1)求證:∠E=∠C;
(2)如圖2,如果AE=AB,且BD:DE=2:3,求cos∠ABC的值;
(3)如果∠ABC是銳角,且△ABC與△ADE相似,求∠ABC的度數(shù),并直接寫出的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中(如圖),已知拋物線y=x2-2x,其頂點為A.
(1)寫出這條拋物線的開口方向、頂點A的坐標,并說明它的變化情況;
(2)我們把一條拋物線上橫坐標與縱坐標相等的點叫做這條拋物線的“不動點”
①試求拋物線y=x2-2x的“不動點”的坐標;
②平移拋物線y=x2-2x,使所得新拋物線的頂點B是該拋物線的“不動點”,其對稱軸與x軸交于點C,且四邊形OABC是梯形,求新拋物線的表達式.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,AB、AC是⊙O的兩條弦,且AB=AC,D是AO延長線上一點,聯(lián)結BD并延長交⊙O于點E,聯(lián)結CD并延長交⊙O于點F.
(1)求證:BD=CD:
(2)如果AB2=AO·AD,求證:四邊形ABDC是菱形.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1是某小型汽車的側面示意圖,其中矩形ABCD表示該車的后備箱,在打開后備箱的過程中,箱蓋ADE可以繞點A逆時針方向旋轉,當旋轉角為60°時,箱蓋ADE落在AD'E'的位置(如圖2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.
(1)求點D'到BC的距離;
(2)求E、E'兩點的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xoy中(如圖),已知一次函數(shù)的圖像平行于直線,且經過點A(2,3),與x軸交于點B。
(1)求這個一次函數(shù)的解析式;
(2)設點C在y軸上,當AC=BC時,求點C的坐標。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在菱形ABCD中,點P是BC邊上一動點,連結AP,AP的垂直平分線交BD于點G,交 AP于點E,在P點由B點到C點的運動過程中,∠APG的大小變化情況是( )
A. 變大 B. 先變大后變小 C. 先變小后變大 D. 不變
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l: 與x軸.y軸交于B,A兩點,點D,C分別為線段AB,OB的中點,連結CD,如圖,將△DCB繞點B按順時針方向旋轉角,如圖.
(1)連結OC,AD,求證∽;
(2)當0°<<180°時,若△DCB旋轉至A,C,D三點共線時,求線段OD的長;
(3)試探索:180°<<360°時,是否還有可能存在A,C,D三點共線的情況,若存在,求出此直線的表達式;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與直線AB交于A(-4,-4),B(0,4)兩點,直線AC:y=-x-6交y軸與點C.點E是直線AB上的動點,過點E作EF⊥x軸交AC于點F,交拋物線于點G.
(1)求拋物線y=-x2+bx+c的表達式;
(2)連接GB、EO,當四邊形GEOB是平行四邊形時,求點G的坐標;
(3)①在y軸上存在一點H,連接EH、HF,當點E運動到什么位置時,以A、E、F、H為頂點的四邊形是矩形?求出此時點E、H的坐標;
②在①的前提下,以點E為圓心,EH長為半徑作圓,點M為⊙E上一動點,求AM+CM的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com