科目: 來源: 題型:
【題目】已知關(guān)于x 的方程 x 2m 1 x m 2 0 。
(1)若方程總有兩個實數(shù)根,求m 的取值范圍;
(2)若兩實數(shù)根、滿足 11 12 ,求 m 的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=∠ADC=90°,對角線AC,BD交于點O,DE平分∠ADC交BC于點E,連接OE.
(1)求證:四邊形ABCD是矩形;
(2)若AB=2,求△OEC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y ax bx c ( a, b, c 是常數(shù),a 0 )與 x 軸交于A ,B 兩點,頂點P(m,n),給出下列結(jié)論:①2a+c<0;②若,,在拋物線上,則y1>y2>y3;③關(guān)于x的方程有實數(shù)解,則;④當時,△ABP為等腰直角三角形,正確的結(jié)論有( )個.
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】(2011山東濟南,27,9分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經(jīng)過A、C兩點,與AB邊交于點D.
(1)求拋物線的函數(shù)表達式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達式,并求出m為何值時,S取得最大值;
②當S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點,點P在線段AD上,過P作PF⊥AE于F,設(shè)PA=x.
(1)求證:△PFA∽△ABE;
(2)當點P在線段AD上運動時,設(shè)PA=x,是否存在實數(shù)x,使得以點P,F,E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;
(3)探究:當以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點時,請直接寫出x滿足的條件: .
備用圖
查看答案和解析>>
科目: 來源: 題型:
【題目】潮州旅游文化節(jié)開幕前,某鳳凰茶葉公司預測今年鳳凰茶葉能夠暢銷,就用32000元購進了一批鳳凰茶葉,上市后很快脫銷,茶葉公司又用68000元購進第二批鳳凰茶葉,所購數(shù)量是第一批購進數(shù)量的2倍,但每千克鳳凰茶葉進價多了10元.
(1)該鳳凰茶葉公司兩次共購進這種鳳凰茶葉多少千克?
(2)如果這兩批茶葉每千克的售價相同,且全部售完后總利潤率不低于20%,那么每千克售價至少是多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知l1∥l2,射線MN分別和直線l1,l2交于A、B,射線ME分別和直線l1,l2交于C、D,點P在A、B間運動(P與A、B兩點不重合),設(shè)∠PDB=α,∠PCA=β,∠CPD=γ.
(1)試探索α,β,γ之間有何數(shù)量關(guān)系?說明理由.
(2)如果BD=3,AB=9,AC=6,并且AC垂直于MN,那么點P運動到什么位置時,△ACP≌△BPD說明理由.
(3)在(2)的條件下,當△ACP≌△BPD時,PC與PD之間有何位置關(guān)系,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某品牌牛奶供應(yīng)商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.根據(jù)統(tǒng)計圖的信息解決下列問題:
(1)本次調(diào)查的學生有多少人?
(2)補全上面的條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中C對應(yīng)的中心角度數(shù)是_____;
(4)若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A,B口味的牛奶共約多少盒?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2,E為斜邊AB的中點,點P是射線BC上的一個動點,連接AP、PE,將△AEP沿著邊PE折疊,折疊后得到△EPA′,當折疊后△EPA′與△BEP的重疊部分的面積恰好為△ABP面積的四分之一,則此時BP的長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】一個安裝有進出水管的30升容器,水管單位時間內(nèi)進出的水量是一定的,設(shè)從某時刻開始的4分鐘內(nèi)只進水不出水,在隨后的8分鐘內(nèi)既進水又出水,得到水量y(升)與時間x(分)之間的函數(shù)關(guān)系如圖所示.根據(jù)圖象信思給出下列說法,其中錯誤的是( 。
A. 每分鐘進水5升
B. 每分鐘放水1.25升
C. 若12分鐘后只放水,不進水,還要8分鐘可以把水放完
D. 若從一開始進出水管同時打開需要24分鐘可以將容器灌滿
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com