如圖,這個(gè)二次函數(shù)的方程為
 

考點(diǎn):二次函數(shù)的圖象
專題:綜合題,數(shù)形結(jié)合,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)圖象知,該函數(shù)經(jīng)過點(diǎn)(4,1)(7,24)(12,40).所以利用待定系數(shù)法可求得該二次函數(shù)的解析式.
解答: 解:設(shè)所求的二次函數(shù)的解析式是y=ax2+bx+c(a≠0),
由圖象可得出圖象過點(diǎn)(4,1)(7,24)(12,40),把各點(diǎn)代入得,
1=16a+4b+c
24=49a+7b+c
40=144a+12b+c
解得:a=-
67
120
,b=
6811
600
,c=-
5321
150

∴二次函數(shù)的解析式為:y=-
67
120
x2+
6811
600
x-
5321
150

故答案為:y=-
67
120
x2+
6811
600
x-
5321
150
點(diǎn)評(píng):本題主要考查了二次函數(shù)的解析式的求法和與幾何圖形結(jié)合的綜合能力的培養(yǎng),要會(huì)利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
9
+
y2
5
=1的左、右焦點(diǎn)分別為F1、F2,P是橢圓上的一點(diǎn),且∠F1PF2=60°,則△PF1F2的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線AB∥平面α,平面α的法向量
n
=(1,0,1),平面α內(nèi)一點(diǎn)C的坐標(biāo)為(0,0,1),直線AB上點(diǎn)A的坐標(biāo)為(1,2,1),則直線AB到平面α的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知直線l的解析式是y=
4
3
x-4,并且與x軸、y軸分別交于A、B兩點(diǎn),一個(gè)半徑為1.5的⊙C,圓心C從點(diǎn)(0,1.5)開始以每秒0.5個(gè)單位的速度沿著y軸向下運(yùn)動(dòng),當(dāng)⊙C與直線l相切時(shí),求該圓運(yùn)動(dòng)的時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
、
b
c
分別為直線a、b、c的方向向量,且
a
b
(λ≠0),
b
c
=0,則a與c的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓P與圓x2+y2-2x=0外切于點(diǎn)(1,-1),并且圓心在直線x+y+3=0上,求圓P的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,
BC
CA
=
CA
AB
,|
BA
+
BC
|=2,且B∈[
π
3
3
],則
BC
BA
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x、y為實(shí)數(shù),集合A={(x,y)|y2-x-1=0},B={(x,y)|16x2+8x-2y+5=0},C={(x,y)|y=kx+b},問是否存在自然數(shù)k,b使(A∪B)∩C=∅?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正數(shù)數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=
1
4
(an+1)2,
(1)求證:an=2n-1;
(2)設(shè)bn=
1
anan+1
,記數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案