8.已知三棱錐的三視圖如圖所示,且a+b=4,試求這個幾何體的體積.

分析 由題設(shè)可得其直觀圖如圖,由三視圖知,DA,DB,DC兩兩垂直,BD=1,AC=$\sqrt{6}$,AB=a,BC=b,利用條件求出a,b,即可求這個幾何體的體積.

解答 解:由題設(shè)可得其直觀圖如圖,由三視圖知,DA,DB,DC兩兩垂直,
BD=1,AC=$\sqrt{6}$,AB=a,BC=b
如圖有PC=$\sqrt{{a}^{2}-1}$,PB=$\sqrt{^{2}-1}$
在直角三角形BPC中有PC2+PB2=BC2=6,即a2-1+b2-1=6,即a2+b2=8,
∵a+b=4,∴a=b=2,∴V=$\frac{1}{3}×\frac{1}{2}×1×\sqrt{3}×\sqrt{3}$=$\frac{1}{2}$.

點評 本題考點是由三視圖求幾何體的面積、體積,考查對三視圖的理解與應(yīng)用,主要考查三視圖與實物圖之間的關(guān)系,用三視圖中的數(shù)據(jù)還原出實物圖的數(shù)據(jù),再根據(jù)相關(guān)的公式求表面積與體積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.不等式組$\left\{\begin{array}{l}{x-y≤0}\\{x+y≥-2}\\{x-2y≥-2}\end{array}\right.$的解集為D,若(a,b)∈D,則z=2a-3b的最小值是-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)f(n)=24+27+210+…+23n+10(n∈N),則f(n)=$\frac{16({8}^{n+3}-1)}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.[$\root{3}{(-5)^{2}}$]${\;}^{\frac{3}{4}}$=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知條件p:|x+1|>2,條件q:x2-5x+6<0,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)$f(x)=Asin(wx+φ)(A>0,w>0,-\frac{π}{2}<φ<\frac{π}{2})$的部分圖象如圖所示,則f(x)的周期為( 。
A.3B.$\frac{5}{2}$C.$\frac{2π}{3}$D.$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.一個幼兒園的母親節(jié)聯(lián)誼會上,有3個小孩分別給媽媽畫了一幅畫作為禮物,放在了3個相同的信封里,可是忘了做標(biāo)記,現(xiàn)在媽媽們隨機(jī)任取一個信封,則恰好有一個媽媽拿到了自己孩子的畫的概率為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.下列說法正確的序號是(2)(4)
 (1)第一象限角是銳角;
 (2)函數(shù)y=log${\;}_{\frac{1}{2}}$(x2+2x-3)的單調(diào)增區(qū)間為(-∞,-3);
 (3)函數(shù)f(x)=|cosx|是周期為2π的偶函數(shù);
 (4)方程$x=tanx,x∈({-\frac{π}{2},\frac{π}{2}})$只有一個解x=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在某次測量中得到的A樣本數(shù)據(jù)如下:
582,584,584,586,586,586,588,588,588,588.
若B樣本數(shù)據(jù)恰好是A樣本數(shù)據(jù)都加20后所得數(shù)據(jù),則A,B兩樣本的下列數(shù)字特征對應(yīng)相同的有④.(把你認(rèn)為正確的序號填入空格中)
①眾數(shù) ②平均數(shù) ③中位數(shù) ④標(biāo)準(zhǔn)差.

查看答案和解析>>

同步練習(xí)冊答案