【題目】已知定義在R上的奇函數(shù)f(x),且對任意實數(shù)x1,x2,x1≠x2時,都有(f(x1)﹣f(x2))(x1﹣x2)<0.若存在實數(shù)x∈[﹣3,3],使得不等式f(a﹣x)+f(a2﹣x)>0成立,則實數(shù)a的取值范圍是( 。
A.(﹣3,2)B.[﹣3,2]C.(﹣2,1)D.[﹣2,1]
【答案】A
【解析】
利用奇函數(shù)性質(zhì)不等式變?yōu)?/span>,條件(f(x1)﹣f(x2))(x1﹣x2)<0說明函數(shù)是減函數(shù),從而得,即,只要小于的最大值即可.
∵對任意實數(shù)x1,x2,x1≠x2時,都有(f(x1)﹣f(x2))(x1﹣x2)<0.∴函數(shù)是減函數(shù),
又是奇函數(shù),∴不等式f(a﹣x)+f(a2﹣x)>0可變?yōu)?/span>,即,∴,即,
∵存在實數(shù)x∈[﹣3,3],使得不等式f(a﹣x)+f(a2﹣x)>0成立,
當x∈[﹣3,3]時,的最大值是6,∴,解是.
故選:A.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的方程為,雙曲線的一條漸近線與軸所成的夾角為,且雙曲線的焦距為.
(1)求橢圓的方程;
(2)設(shè)分別為橢圓的左,右焦點,過作直線 (與軸不重合)交橢圓于, 兩點,線段的中點為,記直線的斜率為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C過點M(0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.
(1)求圓C的方程;
(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,邊a、b、c分別是角A、B、C的對邊,且滿足bcosC=(3a-c)cosB
(1)求cosB
(2)若△ABC的面積為4,b=4,求△ABC的周長
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】朱世杰是歷史上最偉大的數(shù)學家之一,他所著的《四元玉鑒》卷中“如像招數(shù)”五問中有如下問題:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日轉(zhuǎn)多七人.”其大意為“官府陸續(xù)派遣1864人前往修筑堤壩,第一天派出64人,從第二天開始每天派出的人數(shù)比前一天多7人.”在該問題中的1864人全部派遣到位需要的天數(shù)為( )
A. 9B. 16C. 18D. 20
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C對應的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.
(1)求角A的大。
(2)若△ABC的面積S=5,b=5,求sinBsinC的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】自2017年2月底,90多所自主招生試點高校將陸續(xù)出臺2017年自主招生簡章,某校高三年級選取了在期中考試中成績優(yōu)異的100名學生作為調(diào)查對象,對是否準備參加2017年的自主招生考試進行了問卷調(diào)查,其中“準備參加”“不準備參加”和“待定”的人數(shù)如表:
準備參加 | 不準備參加 | 待定 | |
男生 | 30 | 6 | 15 |
女生 | 15 | 9 | 25 |
(1)在所有參加調(diào)查的同學中,在三種類型中用分層抽樣的方法抽取20人進行座談交流,則在“準備參加”“不準備參加”和“待定”的同學中應各抽取多少人?
(2)在“準備參加”的同學中用分層抽樣方法抽取6人,從這6人中任意抽取2人,求至少有一名女生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,△ABC為正三角形,EC⊥平面ABC,BD∥CE,且CE=CA=2BD,M是EA的中點.求證:
(1)DE=DA;
(2)平面BDM⊥平面ECA;
(3)平面DEA⊥平面ECA.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】伴隨著智能手機的深入普及,支付形式日漸多樣化,打破了傳統(tǒng)支付的局限性和壁壘,有研究表明手機支付的使用比例與人的年齡存在一定的關(guān)系,某調(diào)研機構(gòu)隨機抽取了50人,對他們一個月內(nèi)使用手機支付的情況進行了統(tǒng)計,如下表:
(1)若以“年齡55歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有的把握認為“使用手機支付”與人的年齡有關(guān);
(2)若從年齡在,內(nèi)的被調(diào)查人中各隨機選取2人進行追蹤調(diào)查,記選中的4人中“使用手機支付”的人數(shù)為.
①求隨機變量的分布列;
②求隨機變量的數(shù)學期望.
參考數(shù)據(jù)如下:
0.05 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
參考格式:,其中
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com