【題目】伴隨著智能手機(jī)的深入普及,支付形式日漸多樣化,打破了傳統(tǒng)支付的局限性和壁壘,有研究表明手機(jī)支付的使用比例與人的年齡存在一定的關(guān)系,某調(diào)研機(jī)構(gòu)隨機(jī)抽取了50人,對(duì)他們一個(gè)月內(nèi)使用手機(jī)支付的情況進(jìn)行了統(tǒng)計(jì),如下表:
(1)若以“年齡55歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為“使用手機(jī)支付”與人的年齡有關(guān);
(2)若從年齡在,內(nèi)的被調(diào)查人中各隨機(jī)選取2人進(jìn)行追蹤調(diào)查,記選中的4人中“使用手機(jī)支付”的人數(shù)為.
①求隨機(jī)變量的分布列;
②求隨機(jī)變量的數(shù)學(xué)期望.
參考數(shù)據(jù)如下:
0.05 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
參考格式:,其中
【答案】(1)見解析;(2)①見解析.②見解析.
【解析】
試題分析:(1)根據(jù)表格中數(shù)據(jù)可完成列聯(lián)表,利用公式:求得 ,與鄰界值比較,即可得到結(jié)論;(2)①選中的人中“使用手機(jī)支付”的人數(shù)為的可能取值為利用組合知識(shí),根據(jù)古典概型概率公式公式求出各隨機(jī)變量對(duì)應(yīng)的概率,從而可得分布列;②由①利用期望公式可得的數(shù)學(xué)期望.
試題解析:(1)列聯(lián)表如下:
的觀測值,
所以有的把握認(rèn)為“使用手機(jī)支付”與人的年齡有關(guān).
(2)①由題意,可知所有可能取值有0,1,2,3,
,
,
,
,
所以的分布列是
②.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x),且對(duì)任意實(shí)數(shù)x1,x2,x1≠x2時(shí),都有(f(x1)﹣f(x2))(x1﹣x2)<0.若存在實(shí)數(shù)x∈[﹣3,3],使得不等式f(a﹣x)+f(a2﹣x)>0成立,則實(shí)數(shù)a的取值范圍是( )
A.(﹣3,2)B.[﹣3,2]C.(﹣2,1)D.[﹣2,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1) 如果,求函數(shù)的值域;
(2) 求函數(shù)=的最大值;
(3) 如果對(duì)不等式中的任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某老小區(qū)建成時(shí)間較早,沒有集中供暖,隨著人們生活水平的日益提高熱力公司決定在此小區(qū)加裝暖氣該小區(qū)的物業(yè)公司統(tǒng)計(jì)了近五年(截止2018年年底)小區(qū)居民有意向加裝暖氣的戶數(shù),得到如下數(shù)據(jù)
年份編號(hào)x | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
加裝戶數(shù)y | 34 | 95 | 124 | 181 | 216 |
(Ⅰ)若有意向加裝暖氣的戶數(shù)y與年份編號(hào)x滿足線性相關(guān)關(guān)系求y與x的線性回歸方程并預(yù)測截至2019年年底,該小區(qū)有多少戶居民有意向加裝暖氣;
(Ⅱ)2018年年底鄭州市民生工程決定對(duì)老舊小區(qū)加裝暖氣進(jìn)行補(bǔ)貼,該小區(qū)分到120個(gè)名額物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競拍的方式分配名額,競拍方案如下:①截至2018年年底已登記在冊(cè)的居民擁有競拍資格;②每戶至多申請(qǐng)一個(gè)名額,由戶主在競拍網(wǎng)站上提出申請(qǐng)并給出每平方米的心理期望報(bào)價(jià);③根據(jù)物價(jià)部門的規(guī)定,每平方米的初裝價(jià)格不得超過300元;④申請(qǐng)階段截止后,將所有申請(qǐng)居民的報(bào)價(jià)自高到低排列,排在前120位的業(yè)主以其報(bào)價(jià)成交;⑤若最后出現(xiàn)并列的報(bào)價(jià),則認(rèn)為申請(qǐng)時(shí)問在前的居民得到名額,為預(yù)測本次競拍的成交最低價(jià),物業(yè)公司隨機(jī)抽取了有競拍資格的50位居民進(jìn)行調(diào)查統(tǒng)計(jì)了他們的擬報(bào)競價(jià),得到如圖所示的頻率分布直方圖:
(1)求所抽取的居民中擬報(bào)競價(jià)不低于成本價(jià)180元的人數(shù);
(2)如果所有符合條件的居民均參與競拍,請(qǐng)你利用樣本估計(jì)總體的思想預(yù)測至少需要報(bào)價(jià)多少元才能獲得名額(結(jié)果取整數(shù))
參考公式對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…(xn,yn),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),過點(diǎn)作與軸平行的直線,點(diǎn)為動(dòng)點(diǎn)在直線上的投影,且滿足.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)已知點(diǎn)為曲線上的一點(diǎn),且曲線在點(diǎn)處的切線為,若與直線相交于點(diǎn),試探究在軸上是否存在點(diǎn),使得以為直徑的圓恒過點(diǎn)?若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某玩具廠生產(chǎn)出一種新型兒童泡沫玩具飛機(jī),為更精確的確定最終售價(jià),該廠采用了多種價(jià)格對(duì)該玩具飛機(jī)進(jìn)行了試銷,某銷售點(diǎn)的銷售情況如下表:
單價(jià)(元) | 8 | 9 | 10 | 11 | 12 |
銷量(架) | 40 | 36 | 30 | 24 | 20 |
從散點(diǎn)圖可以看出,這些點(diǎn)大致分布在一條直線的附近,變量,有較強(qiáng)的線性相關(guān)性.
(1)求銷量關(guān)于的回歸方程;
(2)若每架該玩具飛機(jī)的成本價(jià)為5元,利用(1)的結(jié)果,預(yù)測每架該玩具飛機(jī)的定價(jià)為多少元時(shí),總利潤最大.(結(jié)果保留一位小數(shù))
(附:,,,.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某客戶準(zhǔn)備在家中安裝一套凈水系統(tǒng),該系統(tǒng)為三級(jí)過濾,使用壽命為十年.如圖所示,兩個(gè)一級(jí)過濾器采用并聯(lián)安裝,二級(jí)過濾器與三級(jí)過濾器為串聯(lián)安裝。
其中每一級(jí)過濾都由核心部件濾芯來實(shí)現(xiàn)。在使用過程中,一級(jí)濾芯和二級(jí)濾芯都需要不定期更換(每個(gè)濾芯是否需要更換相互獨(dú)立),三級(jí)濾芯無需更換,若客戶在安裝凈水系統(tǒng)的同時(shí)購買濾芯,則一級(jí)濾芯每個(gè)元,二級(jí)濾芯每個(gè)元.若客戶在使用過程中單獨(dú)購買濾芯,則一級(jí)濾芯每個(gè)元,二級(jí)濾芯每個(gè)元,F(xiàn)需決策安裝凈水系統(tǒng)的同時(shí)購濾芯的數(shù)量,為此參考了根據(jù)套該款凈水系統(tǒng)在十年使用期內(nèi)更換濾芯的相關(guān)數(shù)據(jù)制成的圖表,其中圖是根據(jù)個(gè)一級(jí)過濾器更換的濾芯個(gè)數(shù)制成的柱狀圖,表是根據(jù)個(gè)二級(jí)過濾器更換的濾芯個(gè)數(shù)制成的頻數(shù)分布表.
二級(jí)濾芯更換頻數(shù)分布表
二級(jí)濾芯更換的個(gè)數(shù) | ||
頻數(shù) |
以個(gè)一級(jí)過濾器更換濾芯的頻率代替個(gè)一級(jí)過濾器更換濾芯發(fā)生的概率,以個(gè)二級(jí)過濾器更換濾芯的頻率代替個(gè)二級(jí)過濾器更換濾芯發(fā)生的概率.
(1)求一套凈水系統(tǒng)在使用期內(nèi)需要更換的各級(jí)濾芯總個(gè)數(shù)恰好為的概率;
(2)記表示該客戶的凈水系統(tǒng)在使用期內(nèi)需要更換的一級(jí)濾芯總數(shù),求的分布列及數(shù)學(xué)期望;
(3)記,分別表示該客戶在安裝凈水系統(tǒng)的同時(shí)購買的一級(jí)濾芯和二級(jí)濾芯的個(gè)數(shù).若,且,以該客戶的凈水系統(tǒng)在使用期內(nèi)購買各級(jí)濾芯所需總費(fèi)用的期望值為決策依據(jù),試確定,的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列是公比大于的等比數(shù)列,是其前項(xiàng)和,已知,且構(gòu)成等差數(shù)列
(1)求數(shù)列的通項(xiàng);
(2)令求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com