4.為了加入大學(xué)的學(xué)生會,甲、乙兩位大一新生分別在7個部門中選擇4個進(jìn)行面試,則他們所選的面試部門中,恰有3個相同的選法有( 。┓N.
A.210B.420C.630D.840

分析 根據(jù)分步計(jì)數(shù)原理,先選3門確定為甲乙相同的3門,再從剩下的4門中任選2門分配給甲乙即可.

解答 解:先出7門中選3門,
再從剩下的4門再選2門分給甲乙,
故甲乙所選的課程中恰有3門相同,
故有C73×A42=420種情況,
故選:B.

點(diǎn)評 本題考查分步計(jì)數(shù)原理,關(guān)鍵是如何分步,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.十八屆五中全會公報(bào)指出:努力促進(jìn)人口均衡發(fā)展,堅(jiān)持計(jì)劃生育的基本國策,完善人口發(fā)展戰(zhàn)略,全面實(shí)施一對夫婦可生育兩個孩子的政策,提高生殖健康、婦幼保健、托幼等公共服務(wù)水平,為了解適齡公務(wù)員對放開生育二胎政策的態(tài)度,某部門隨機(jī)調(diào)查了200位30到40歲的公務(wù)員,得到情況如表:
 男公務(wù)員女公務(wù)員
生二胎8040
不生二胎4040
(1)是否有99%以上的把握認(rèn)為“生二胎與性別有關(guān)”,并說明理由;
(2)采用分層抽樣的方式從男公務(wù)員中調(diào)查6人,并對其中的3人進(jìn)行回訪,則這三人都要生二胎的概率是多少?
附:k2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥k00.0500.0100.001
K03.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的一條漸近線經(jīng)過圓(x-1)2+(y-2$\sqrt{2}}$)2=16的圓心,則此雙曲線的離心率是( 。
A.2B.3C.$\sqrt{5}$D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:OM=ON(a>b>0)的左右焦點(diǎn)為F1、F2,點(diǎn)A(2,$\sqrt{2}$)在橢圓C上,且AF2與x軸垂直.
(1)求橢圓C的方程;
(2)過A作直線與橢圓C交于另外一點(diǎn)B,O為坐標(biāo)原點(diǎn),若三角形AOB的面積為$\frac{2\sqrt{2}}{3}$,求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)集合A=[0,$\frac{1}{2}$),B=[$\frac{1}{2}$,1],函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈A}\\{lo{g}_{2}(2-x),x∈B}\end{array}\right.$,若f(x0)∈A,則x0的取值范圍是(2-$\sqrt{2}$,1];若x0∈A,且f[f(x0)]∈A,則x0的取值范圍是($\frac{3}{2}-\sqrt{2}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y≤3}\\{x≥y+1}\\{x≥-1}\end{array}\right.$則$\frac{y-2}{x+3}$的取值范圍為[$-\frac{7}{2}$,$-\frac{1}{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,直線DA過圓O的圓心,且交圓O于A,B兩點(diǎn),BC=CO=$\frac{1}{2}$BD,DM為圓O的一條割線,且與圓O交于M,T兩點(diǎn).
(1)證明:DT•DM=DO•DC;
(2)若∠DOT=80°,BM平分∠DMC,求∠BMC的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.關(guān)于x的方程f ( x )+x-a=0有兩個實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(  )(其中,$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_2}x,x>0\end{array}\right.$)
A.(-∞,1]B.[0,1]C.[1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若動△ABC內(nèi)接于拋物線y2=4x,且△ABC的重心恰好是拋物線的焦點(diǎn),求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案