13.關(guān)于x的方程f ( x )+x-a=0有兩個(gè)實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。ㄆ渲校$f(x)=\left\{\begin{array}{l}{2^x},x≤0\\{log_2}x,x>0\end{array}\right.$)
A.(-∞,1]B.[0,1]C.[1,+∞)D.(-∞,+∞)

分析 由題意可得函數(shù)y=f(x)的圖象與直線(xiàn)y=a-x有兩個(gè)交點(diǎn),由直線(xiàn)過(guò)點(diǎn)(0,1),可得a=1,通過(guò)圖象觀察,即可得到a的范圍.

解答 解:x的方程f ( x )+x-a=0有兩個(gè)實(shí)數(shù)根,即為函數(shù)y=f(x)的圖象與直線(xiàn)y=a-x有兩個(gè)交點(diǎn),
由直線(xiàn)y=a-x過(guò)點(diǎn)(0,1),可得a=1,
由圖象可得a≤1時(shí),y=f(x)的圖象和直線(xiàn)y=a-x有兩個(gè)交點(diǎn),
即方程f ( x )+x-a=0有兩個(gè)實(shí)數(shù)根.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)方程的轉(zhuǎn)化思想的運(yùn)用,注意運(yùn)用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的圖象,考查數(shù)形結(jié)合的思想方法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知函數(shù)f(x)=ln(1+x)-x+x2,求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程為3x-2y+2ln2-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.為了加入大學(xué)的學(xué)生會(huì),甲、乙兩位大一新生分別在7個(gè)部門(mén)中選擇4個(gè)進(jìn)行面試,則他們所選的面試部門(mén)中,恰有3個(gè)相同的選法有(  )種.
A.210B.420C.630D.840

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.正三棱柱ABC-A1B1C1中,AB=6,AA1=4,D為BC的中點(diǎn).
(1)求證:A1B∥平面ADC1;
(2)在線(xiàn)段BB1上是否存在點(diǎn)P,使得CP⊥平面ADC1.若存在,請(qǐng)確定點(diǎn)P的位置;若不存在,請(qǐng)說(shuō)明理由.
(3)求點(diǎn)C到平面ADC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.等差數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}是等比數(shù)列,且滿(mǎn)足a1=3,b1=1,b2+S2=10,a5-2b2=a3,數(shù)列{${\frac{a_n}{b_n}}\right.$}的前n項(xiàng)和Tn,若Tn<M對(duì)一切正整數(shù)n都成立,則M的最小值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在Rt△ABC中,A=$\frac{π}{2}$,AB=1,AC=2,以AB方向、AC方向?yàn)閤軸、y軸建立平面直角坐標(biāo)系,點(diǎn)P(x,y)在△ABC內(nèi)部及邊界上運(yùn)動(dòng),記z=x+y,則z的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)的定義域?yàn)椋?∞,0)∪(0,+∞),對(duì)定義域內(nèi)的任意x1、x2,都有f(x1•x2)=f(x1)+f(x2),則f(1)的值為( 。
A.1B.2C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=lnx+x2-2ax+1(a為常數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若存在x0∈(0,1],使得對(duì)任意的a∈(-2,0],不等式2mea(a+1)+f(x0)>a2+2a+4(其中e為自然對(duì)數(shù)的底數(shù))都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E是BC的中點(diǎn),F(xiàn)是棱CD上的動(dòng)點(diǎn),G為C1D1的中點(diǎn),H為A1G的中點(diǎn).
( I)當(dāng)點(diǎn)F與點(diǎn)D重合時(shí),求證:EF⊥AH;
( II)設(shè)二面角C1-EF-C的大小為θ,試確定點(diǎn)F的位置,使得sin θ=$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案