15.在平面直角坐標系中,定義兩點P(x1,y1)與Q(x2,y2)之間的“直角距離”為:d(P,Q)=|x1-x2|+|y1-y2|.現(xiàn)給出下列4個命題:
①已知P(1,2),Q(cos2θ,sin2θ)(θ∈R),則d(P,Q)為定值;
②已知P,Q,R三點不共線,則必有d(P,Q)+d(Q,R)>d(P,R);
③用|PQ|表示P,Q兩點之間的距離,則|PQ|≥$\frac{{\sqrt{2}}}{2}$d(P,Q);
④若P,Q是橢圓$\frac{x^2}{5}+\frac{y^2}{4}$=1上的任意兩點,則d(P,Q)的最大值為6.
則下列判斷正確的為( 。
A.命題①,②均為真命題B.命題②,③均為假命題
C.命題②,④均為假命題D.命題①,③,④均為真命題

分析 先根據(jù)直角距離的定義分別表示出所求的問題的表達式,然后根據(jù)集合中絕對值的性質(zhì)進行判定即可.

解答 解:①已知P(1,2),Q(cos2θ,sin2θ)(θ∈R),則d(P,Q)=|1-cos2θ|+|2-sin2θ|=sin2θ+2-sin2θ=2為定值;故①正確,
②已知P,Q,R三點不共線,設(shè)P(1,0),Q(0,0),R(0,1),
則d(P,Q)=|xP-xQ|+|yP-yQ|=1,
d(Q,R)=|xQ-xR|+|yQ-yR|=1.
d(P,R)=|xP-xR|+|yP-yR|=1+1=2,此時d(P,Q)+d(Q,R)=d(P,R);
∴d(P,Q)+d(Q,R)>d(P,R)不成立,故②錯誤,
③若|PQ|表示P、Q兩點間的距離,那么|PQ|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$,d(P,Q)=|x1-x2|+|y1-y2|,
∵2(a2+b2)≥(a+b)2,
∴$\sqrt{2[({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}]}$≥|x1-x2|+|y1-y2|,即$\sqrt{2}$|PQ|≥d(P,Q),
則|PQ|≥$\frac{1}{\sqrt{2}}$d(P,Q)=$\frac{\sqrt{2}}{2}$d(P,Q),故③正確,
④若P,Q是$\frac{x^2}{5}+\frac{y^2}{4}$=1上的任意兩點,d(P,Q)的最大,設(shè)P($\sqrt{5}$cosα,2sinα),Q(-$\sqrt{5}$cosα,-2sinα);則d(P,Q)=|x1-x2|+|y1-y2|=2($\sqrt{5}$cosα+2sinα)=6sin(α+θ),則d(P,Q)的最大值為6;故④正確,
故選:D

點評 本題考查兩點之間的“直角距離”的定義,絕對值的意義,關(guān)鍵是明確P(x1,y1)、Q(x2,y2)兩點之間的“直角距離”的含義.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

3.2個人分別從3部電影中選擇一部電影購買電影票,不同的購買方式共有( 。
A.6B.9C.8D.27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知焦點在x軸上的橢圓的離心率是$\frac{{\sqrt{2}}}{2}$,且過點S(-1,$\frac{{\sqrt{2}}}{2}$)
(1)求該橢圓方程
(2)若傾斜角是45°的直線l和橢圓交于P、Q兩點,M是直線l與x軸的交點,且有3$\overrightarrow{PM}=\overrightarrow{MQ}$,求直線l方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.4+$\frac{3π}{2}$B.4+3πC.4+πD.4+$\sqrt{3}$+$\frac{3π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.戶外運動已經(jīng)成為一種時尚運動.某公司為了了解員工喜歡戶外運動是否與性別有關(guān),決定從公司全體650人中隨機抽取50人進行問卷調(diào)查.
喜歡戶外運動不喜歡戶外運動合計
男員工5
女員工10
合計50
(Ⅰ)通過對挑選的50人進行調(diào)查,得到如下2×2列聯(lián)表:
已知從這50人中進行隨機挑選1人,此人喜歡戶外運動的概率是0.6.請將2×2列聯(lián)表補充完整,并估計該公司男、女員工各多少人;
(Ⅱ)估計有多大的把握認為喜歡戶外運動與性別有關(guān),并說明你的理由;
(Ⅲ)若用隨機數(shù)表法從650人中抽取員工.先將650人按000,001,…,649編號.恰好000~199號都為男員工,450~649號都為女員工.現(xiàn)規(guī)定從隨機數(shù)表(見附表)第2行第7列的數(shù)開始往右讀,在最先挑出的5人中,任取2人,求取到男員工人數(shù)的數(shù)學期望.
附:
P(K2≥k)0.150.100.050.0250.0100.0050.001
K2.0722.7063.8415.0246.6357.87910.828
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
隨機數(shù)表:
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25   83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07   44 39 52 38 79
33 21 12 34 29  78 64 56 07 82  52 42 07 44 38  15 51 00 13 42   99 66 02 79 54.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設(shè)E為?ABCD所在平面內(nèi)一點,滿足$\overrightarrow{CE}$=$\frac{1}{2}$$\overrightarrow{ED}$,則$\overrightarrow{AE}$=( 。
A.$\frac{5}{6}$$\overrightarrow{AC}$+$\frac{1}{6}$$\overrightarrow{BD}$B.$\frac{1}{6}$$\overrightarrow{AC}$+$\frac{5}{6}$$\overrightarrow{BD}$C.-$\frac{5}{6}$$\overrightarrow{AC}$+$\frac{1}{6}$$\overrightarrow{BD}$D.$\frac{5}{6}$$\overrightarrow{AC}$-$\frac{1}{6}$$\overrightarrow{BD}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設(shè)sinα+cosα=m,求sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在△ABC中,角A,B,C所對的邊a,b,c滿足$\frac{cosB}{cosC}$+$\frac{c}$=$\frac{2a}{c}$.
(1)求角C的大;
(2)若邊長c=$\sqrt{3}$,求a+2b的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.一個口袋裝有大小相同的小球9個,其中紅球2個、黑球3個、白球4個,現(xiàn)從中抽取2次,每次抽取一個球.
(Ⅰ)若有放回地抽取2次,求兩次所取的球的顏色不同的概率;
(Ⅱ)若不放回地抽取2次,取得紅球記2分,取得黑球記1分,取得白球記0分,記兩次取球的得分之和為隨機變量X,求X的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案